84 research outputs found

    Hyperbolic contraction measuring systems for extensional flow

    Get PDF
    In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for the shear-thinning LPTT model. This would indicate a modest impact of shear in the flow since such a pressure drop decline is relatively small. It is particularly noteworthy that the increase in pressure drop gathered from the experimental measurements is relatively high despite the low Deborah number range explored

    In situ tensile deformation of zein films with plasticizers and filler materials

    No full text
    Material deformation is a dynamic process. Visualisation of this deformation can help to understand the local deformation and fracture behaviour. Zein (the prolamin protein from maize) films with different amount of plasticizers (0-25%) and different filler materials (maize oil, Dimodan (R), Vestosint (R)), at 25% (w/w) to protein) were deformed under tension and observed at micron scale in real time by a confocal laser scanning microscope (CLSM). The addition of plasticizers increased strain and decreased stress of zein films. At low level of plasticizers (6.25% and 12%), zein films deformed and fracture through micro-crack formation and propagation normal the tensile axis. At high Plasticization, only micro-pores were observed during tensile deformation. The filler material oil and Dimodan (R)( increased, but Vestosint (R)) decreased tensile strain in comparison to the control. This shows that the fracture dynamic is affected by the filler materials and is indeed observed by the CLSM. Analysis of local strain by Fluospheres (R) as particle tracking showed a good linear correlation with the tensile strain of the plasticized zein films. The local strains of filler materials and zein matrix in the films were different from the overall tensile strain. The combination of CLSM with a fluospheres (R) as particle tracking is a good method to study local deformation in biomaterials to understand the deformation and fracture behaviour of biomaterials. (C) 2006 Elsevier Ltd. All rights reserved

    Mechanical and Barrier Properties of Films from Millet Protein Pennisetin

    No full text
    Plastics are one of the most commonly used materials today in an immense range of applications. Since plastics originate from petroleum, which is not a renewable resource, we need to find alternatives to achieve environmentally sustainable goals. One of our most abundant renewable resources is cereals; wheat gluten is recognized as a replacement for synthetic plastics. Another cereal protein is pennisetin from pearl millet, which can grow in more arid areas and is therefore an important crop in times of climate change. In contrast to gluten, the material properties of pennisetin have as yet been relatively unexplored. This work evaluated the mechanical and barrier properties of pennisetin films, including three different plasticizers (glycerol only, glycerol/citric acid mixture, and glycerol/lactic acid/polyethylene glycol mixture). The films were cast from ethanol solutions. It was found that all of the three plasticizers resulted in approximately equal thermomechanical properties in the pennisetin films. However, the glycerol/citric acid mixture seemed to give more beneficial tensile and barrier properties. The advantage of this plasticizer mixture was believed to be due to the altered microstructure of the films. The material properties of pennisetin were found to be fully comparable to those of other cereal protein materials

    The function of alpha-crystalline emulsifiers on expanding foam surfaces

    No full text
    The expanding capacity and the stabilizing function of an alpha-crystalline emulsifier on the bubble surfaces during and after expansion of a sugar foam were examined by volume measurements, confocal laser scanning microscopy (CLSM), freeze-etching and transmission electron microscopy (TEM) and oscillatory theological measurements. 0.2-10% (w/w) emulsifier, either a polyglycerol ester mixed with monoglycerides (PGE/MG) in alpha-gel form or sodium oleate in micellar form, was mixed into a 65% sucrose solution in a specially designed vessel at a pressure of 1-5 bar. The foam produced was expanded to ambient pressure before measurements were made. The total volume of the foam was shown to increase proportionally to the expansion with both emulsifiers. With PGE/MG, small bubbles were produced (1-4 mum). With oleate, the bubbles became much larger (5-25 mum) and more coalescence could be observed. The storage modulus of the foam was shown to depend on the bubble sizes, the volume fraction of air and also the emulsifier. The foam stabilized with PGE/MG was stiff at a high concentration of emulsifier, while the micelle forming emulsifier remained more liquid-like. A possible explanation was that the alpha-crystalline PGE/MG emulsifier formed aggregates and caused an attractive bridging interaction between the bubbles, which resulted in a higher storage modulus. The micellar oleate did not cause any bubble bridging. (C) 2003 Elsevier Ltd. All rights reserved

    Effect of viscoelasticity on foam development in zein-starch dough

    No full text
    Above the zein glass transition temperature (similar to 40 degrees C), the viscoelasticity of zein-starch dough is similar to that of gluten. This is of interest because this dough might be used to develop gluten-free products, although it has certain limitations such as workability and aging at room temperature. The most effective way to decrease the dough glass transition temperature is to use a plasticizer, which also influences the viscosity. In this study, viscoelastic zein-starch dough samples were prepared with several concentrations of citric acid as the plasticizer, and the effect of viscoelasticity on crumb structure formation during baking was investigated. Extensional viscosity was correlated with the average bubble size after baking. We found that viscosity could be predicted for this system by measuring the shear viscosity, whereby the Trouton ratio was near-constant for the range of plasticizer concentrations investigated. In addition, our dynamic mechanical analysis (DMA) revealed that bubble growth occurs mainly when the dough reaches 100 degrees C, due to a combination of steam formation and thermal softening of the matrix. At higher temperatures, hardening occurs due to drying and zein crosslinking. (C) 2015 Elsevier Ltd. All rights reserved

    Effect of zein protein and hydroxypropyl methylcellulose on the texture of model gluten-free bread

    No full text
    The influence of zein protein and hydroxypropyl methylcellulose (HPMC) on the texture and volume of gluten-free bread was investigated. The addition of HPMC to starch affected the dough viscoelasticity and it improved the bread volume during baking since it acts as an emulsifier. The addition of zein protein to gluten-free bread increased the crumb firmness and reduced the crust hardness within the range of concentrations investigated. No zein protein network could be observed in the bread crumb. The zein protein, cold mixed at low concentration, did not enhance the dough elasticity. Due to the lack of a protein network noncovalent interactions may stabilize the bubble structure stabilization within the crumb, rather than covalent links of the protein chain. With an optimized amount of zein protein and HPMC hydrocolloid, the gluten-free bread showed similar texture and staling behavior to that of model wheat bread. The optimized recipe, compiled into a spreadsheet, is available in the supporting information. The microstructural observations suggest that zein could be replaced with another protein for this recipe resulting in a similar bread texture

    A Simulation framework for schema-based query routing in P2P-networks

    No full text
    Current simulations of P2P-networks don't take any kind of schemas into account. We present a simulation-framework and first results for query routing based on extensible schema information to describe peer content, providing more value than simple categorizations like the filename as abstraction for an MP3-song. Using different parameterization, we compare the impact of introducing the HyperCuP-topology in a P2P-network for routing and possible clustering in super-peers and discuss first simulation results. We take into account the importance of the Zipf-distribution which is known for being the typical content distribution in internet networks
    corecore