46 research outputs found
Early-Life Programming of Later-Life Brain and Behavior: A Critical Role for the Immune System
The immune system is well characterized for its critical role in host defense. Far beyond this limited role however, there is mounting evidence for the vital role the immune system plays within the brain, in both normal, “homeostatic” processes (e.g., sleep, metabolism, memory), as well as in pathology, when the dysregulation of immune molecules may occur. This recognition is especially critical in the area of brain development. Microglia and astrocytes, the primary immunocompetent cells of the CNS, are involved in every major aspect of brain development and function, including synaptogenesis, apoptosis, and angiogenesis. Cytokines such as tumor necrosis factor (TNF)α, interleukin [IL]-1β, and IL-6 are produced by glia within the CNS, and are implicated in synaptic formation and scaling, long-term potentiation, and neurogenesis. Importantly, cytokines are involved in both injury and repair, and the conditions underlying these distinct outcomes are under intense investigation and debate. Evidence from both animal and human studies implicates the immune system in a number of disorders with known or suspected developmental origins, including schizophrenia, anxiety/depression, and cognitive dysfunction. We review the evidence that infection during the perinatal period of life acts as a vulnerability factor for later-life alterations in cytokine production, and marked changes in cognitive and affective behaviors throughout the remainder of the lifespan. We also discuss the hypothesis that long-term changes in brain glial cell function underlie this vulnerability
Recommended from our members
Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner
Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Diesel exhaust particles (DEP) are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1). Moreover, there is a striking upregulation of toll-like receptor (TLR) 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E)18, which switched to decreased volume by post-natal day (P)30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute to the risk of neurodevelopmental disorders
Unmasking silent neurotoxicity following developmental exposure to environmental toxicants
AbstractSilent neurotoxicity, a term introduced approximately 25years ago, is defined as a persistent change to the nervous system that does not manifest as overt evidence of toxicity (i.e. it remains clinically unapparent) unless unmasked by experimental or natural processes. Silent neurotoxicants can be challenging for risk assessors, as the multifactorial experiments needed to reveal their effects are seldom conducted, and they are not addressed by current study design guidelines. This topic was the focus of a symposium addressing the interpretation and use of silent neurotoxicity data in human health risk assessments of environmental toxicants at the annual meeting of the Developmental Neurotoxicology Society (previously the Neurobehavioral Teratology Society) on June 30th, 2014. Several factors important to the design and interpretation of studies assessing the potential for silent neurotoxicity were discussed by the panelists and audience members. Silent neurotoxicity was demonstrated to be highly specific to the characteristics of the animals being examined, the unmasking agent tested, and the behavioral endpoint(s) evaluated. Overall, the experimental examples presented highlighted a need to consider common adverse outcomes and common biological targets for chemical and non-chemical stressors, particularly when the exposure and stressors are known to co-occur. Risk assessors could improve the evaluation of silent neurotoxicants in assessments through specific steps from researchers, including experiments to reveal the molecular targets and mechanisms that may result in specific types of silent neurotoxicity, and experiments with complex challenges reminiscent of the human situation
Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease
The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms—synaptic dysfunction, immune alterations, and gut–brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease
Stressor-specific alterations in corticosterone and immune responses in mice
Different stressors likely elicit different physiological and behavioral responses. Previously reported differences in the effects of stressors on immune function may reflect qualitatively different physiological responses to stressors; alternatively, both large and subtle differences in testing protocols and methods among laboratories may make direct comparisons among studies difficult. Here we examine the effects of chronic stressors on plasma corticosterone concentrations, leukocyte redistribution, and skin delayed-type hypersensitivity (DTH), and the effects of acute stressors on plasma corticosterone and leukocyte redistribution. The effects of several commonly used laboratory stressors including restraint, forced swim, isolation, and low ambient temperatures (4
°C) were examined. Exposure to each stressor elevated corticosterone concentrations, with restraint (a putative psychological stressor) evoking a significantly higher glucocorticoid response than other stressors. Chronic restraint and forced swim enhanced the DTH response compared to the handled, low temperature, or isolation conditions. Restraint, low temperature, and isolation significantly increased trafficking of lymphocytes and monocytes compared to forced swim or handling. Generally, acute restraint, low temperature, isolation, and handling increased trafficking of lymphocytes and monocytes. Considered together, our results suggest that the different stressors commonly used in psychoneuroimmunology research may not activate the physiological stress response to the same extent. The variation observed in the measured immune responses may reflect differential glucocorticoid activation, differential metabolic adjustments, or both processes in response to specific stressors
Recommended from our members
Effects of photoperiod history on immune responses to intermediate day lengths in Siberian hamsters ( Phodopus sungorus)
Seasonal changes in day length enhance or suppress immune function in individuals of several mammalian species. Siberian hamsters (
Phodopus sungorus) are long-day breeders that adjust reproductive physiology and behavior, body mass, and immune function following exposure to short photoperiods. Photoperiods of intermediate-duration, encountered in nature by juvenile hamsters born in early-spring and by those born in mid-summer, trigger gonadal development in the former cohort and inhibit the onset of puberty in the latter. Divergent reproductive responses to the same intermediate photoperiod depend on a photoperiod history, communicated during gestation. These experiments assessed whether photoperiod history during gestation likewise impacts immunological responses to intermediate photoperiods. Male hamsters were gestated in long photoperiods and remained in long photoperiods postnatally, or were transferred to an intermediate-duration or a short-duration photoperiod; other males were gestated in short days and transferred to an intermediate-duration photoperiod at birth. Long days stimulated, and short days inhibited, somatic and reproductive development; intermediate day lengths either accelerated or inhibited somatic and reproductive development, depending on whether hamsters were gestated in short days or long days, respectively. By contrast, photoperiod during gestation did not affect most immune endpoints. The data suggest that photoperiodic mechanisms that enhance and suppress several aspects of immunity in young-adult hamsters are not responsive to prenatally communicated photoperiod history information