630 research outputs found
Non-integrability of density perturbations in the FRW universe
We investigate the evolution equation of linear density perturbations in the
Friedmann-Robertson-Walker universe with matter, radiation and the cosmological
constant. The concept of solvability by quadratures is defined and used to
prove that there are no "closed form" solutions except for the known Chernin,
Heath, Meszaros and simple degenerate ones. The analysis is performed applying
Kovacic's algorithm. The possibility of the existence of other, more general
solutions involving special functions is also investigated.Comment: 13 pages. The latest version with added references, and a relevant
new paragraph in section I
Many-body aspects of positron annihilation in the electron gas
We investigate positron annihilation in electron liquid as a case study for
many-body theory, in particular the optimized Fermi Hypernetted Chain (FHNC-EL)
method. We examine several approximation schemes and show that one has to go up
to the most sophisticated implementation of the theory available at the moment
in order to get annihilation rates that agree reasonably well with experimental
data. Even though there is basically just one number to look at, the
electron-positron pair distribution function at zero distance, it is exactly
this number that dictates how the full pair distribution behaves: In most
cases, it falls off monotonously towards unity as the distance increases. Cases
where the electron-positron pair distribution exhibits a dip are precursors to
the formation of bound electron--positron pairs. The formation of
electron-positron pairs is indicated by a divergence of the FHNC-EL equations,
from this we can estimate the density regime where positrons must be localized.
This occurs in our calculations in the range 9.4 <= r_s <=10, where r_s is the
dimensionless density parameter of the electron liquid.Comment: To appear in Phys. Rev. B (2003
Rendezvous of Distance-aware Mobile Agents in Unknown Graphs
We study the problem of rendezvous of two mobile agents starting at distinct
locations in an unknown graph. The agents have distinct labels and walk in
synchronous steps. However the graph is unlabelled and the agents have no means
of marking the nodes of the graph and cannot communicate with or see each other
until they meet at a node. When the graph is very large we want the time to
rendezvous to be independent of the graph size and to depend only on the
initial distance between the agents and some local parameters such as the
degree of the vertices, and the size of the agent's label. It is well known
that even for simple graphs of degree , the rendezvous time can be
exponential in in the worst case. In this paper, we introduce a new
version of the rendezvous problem where the agents are equipped with a device
that measures its distance to the other agent after every step. We show that
these \emph{distance-aware} agents are able to rendezvous in any unknown graph,
in time polynomial in all the local parameters such the degree of the nodes,
the initial distance and the size of the smaller of the two agent labels . Our algorithm has a time complexity of
and we show an almost matching lower bound of
on the time complexity of any
rendezvous algorithm in our scenario. Further, this lower bound extends
existing lower bounds for the general rendezvous problem without distance
awareness
Model and experiments to determine lubricant film formation and frictional torque in aircraft landing gear pin joints
Pin joints are found in many large articulating structures. They tend to be under high load and articulate slowly; so, the joints typically operate in the boundary or mixed lubrication regimes. This means that the operating torque depends on the respective proportions of liquid and solid contact between the joint mating faces. In this article, a mixed lubrication model of a grease-lubricated landing gear joint is established to determine a theoretical Stribeck curve, frictional torque and lubricant film thickness under different loads. Parameters describing pin joint working conditions, geometry, lubricant properties and pin/bush texture are used. The model can also predict the proportion of the load that is supported by contacting asperities and lubricant film. The changing proportions of these two parts indicate transformations between different lubrication regimes. Experiments on an instrumented pin joint have been carried out to compare with the predicted friction and torque performance. Theoretical calculation results show good consistency with experimental plots at high load. But under low load, the real friction between pin and bush is significantly lower than theoretical predictions
Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry
The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior
Effect of three common SNPs in 5′-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents
Genes encoding adipokines are considered as candidates for human obesity. In this study we analyzed the expression of leptin (LEP) and adiponectin (ADIPOQ) genes in relation to common 5′-flanking or 5′UTR variants: -2548G>A (LEP), 19A>G (LEP) and -11377C>G (ADIPOQ) in Polish obese children and adolescents. Relative transcription levels in the subcutaneous adipose tissue (real time RT–PCR) and serum protein concentrations (RIA) were measured in 48 obese subjects with known genotypes at three polymorphic sites and in five non-obese controls. None of the studied polymorphisms altered significantly the expression. Significantly elevated relative transcription levels of the LEP gene (P < 0.05) and serum leptin concentrations (P < 0.01) were recorded in obese patients, when compared with the non-obese controls, but such differences were not found for the ADIPOQ gene. Interestingly, the leptin to adiponectin protein concentration ratio (L/A) was approximately sevenfold higher in obese children and adolescents when compared with the non-obese controls (P < 0.001). Taking into consideration the observed relationship between the genotypes and the gene expression level we suggest that these SNPs are not conclusive markers for predisposition to obesity in Polish children and adolescents. On the other hand, we confirmed that the leptin to adiponectin gene expression ratio (L/A) is an informative index characterizing obesity
Universe from vacuum in loop-string cosmology
In this paper we study the description of the Universe based on the low
energy superstring theory modified by the Loop Quantum Gravity effects.This
approach was proposed by De Risi et al. in the Phys. Rev. D {\bf 76} (2007)
103531. We show that in the contrast with the string motivated pre-Big Bang
scenario, the cosmological realisation of the -duality transformation is not
necessary to avoid an initial singularity. In the model considered the universe
starts its evolution in the vacuum phase at time . In this phase
the scale factor , energy density and coupling of the
interactions . After this stage the universe evolves to the
non-singular hot Big Bang phase . Then the
standard classical universe emerges. During the whole evolution the scale
factor increases monotonically. We solve this model analytically. We also
propose and solve numerically the model with an additional dilaton potential in
which the universe starts the evolution from the asymptotically free vacuum
phase and then evolves non-singularly to the emerging dark energy
dominated phase with the saturated coupling constant .Comment: JHEP3 LaTeX class, 19 pages, 9 figures, v2: added some comments and
references, v3: new numerical result added, new figure
Excess thermal resistivity in N₂–CO solid solution at low carbon monoxide concentration
The results of measurements of the thermal conductivity of pure and carbon-monoxide-doped nitrogen crystals, for samples containing up to 0.7% of CO molecules, in the temperature range 1.2–26 K are presented. From the preliminary analysis it results that the interaction of phonons with admixture molecule featuring the same mass, as the host molecule, is relatively weak and depends weakly on the admixture concentration within investigated range of carbon monoxide in nitrogen crystal
New Isotropic and Anisotropic Sudden Singularities
We show the existence of an infinite family of finite-time singularities in
isotropically expanding universes which obey the weak, strong, and dominant
energy conditions. We show what new type of energy condition is needed to
exclude them ab initio. We also determine the conditions under which
finite-time future singularities can arise in a wide class of anisotropic
cosmological models. New types of finite-time singularity are possible which
are characterised by divergences in the time-rate of change of the
anisotropic-pressure tensor. We investigate the conditions for the formation of
finite-time singularities in a Bianchi type universe with anisotropic
pressures and construct specific examples of anisotropic sudden singularities
in these universes.Comment: Typos corrected. Published versio
- …