2,746 research outputs found
Algebra versus analysis in the theory of flexible polyhedra
Two basic theorems of the theory of flexible polyhedra were proven by
completely different methods: R. Alexander used analysis, namely, the Stokes
theorem, to prove that the total mean curvature remains constant during the
flex, while I.Kh. Sabitov used algebra, namely, the theory of resultants, to
prove that the oriented volume remains constant during the flex. We show that
none of these methods can be used to prove the both theorems. As a by-product,
we prove that the total mean curvature of any polyhedron in the Euclidean
3-space is not an algebraic function of its edge lengths.Comment: 5 pages, 5 figures; condition (iii) in Theorem 5 is correcte
Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions
We present, using the statistical model, an analysis of the production of
light nuclei, hypernuclei and their antiparticles in central collisions of
heavy nuclei. Based on these studies we provide predictions for the production
yields of multiply-strange light nuclei.Comment: 9 pages, 6 figues; v2: final versions accepted for publication (Phys.
Lett. B
The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC
We investigate the production of hadrons in nuclear collisions within the
framework of the thermal (or statistical hadronization) model. We discuss both
the ligh-quark hadrons as well as charmonium and provide predictions for the
LHC energy. Even as its exact magnitude is dependent on the charm production
cross section, not yet measured in Pb-Pb collisions, we can confidently predict
that at the LHC the nuclear modification factor of charmonium as a function of
centrality is larger than that observed at RHIC and compare the experimental
results to these predictions.Comment: 4 pages, 3 figures; proceedings of QM201
Heavy quark(onium) at LHC: the statistical hadronization case
We discuss the production of charmonium in nuclear collisions within the
framework of the statistical hadronization model. We demonstrate that the model
reproduces very well the availble data at RHIC. We provide predictions for the
LHC energy where, dependently on the charm production cross section, a
dramatically different behaviour of charmonium production as a function of
centrality might be expected. We discuss also the case in elementary
collisions, where clearly the statistical model does not reproduce the
measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be
published in J. Phys.
Measurement of the space-time interval between two events using the retarded and advanced times of each event with respect to a time-like world-line
Several recent studies have been devoted to investigating the limitations
that ordinary quantum mechanics and/or quantum gravity might impose on the
measurability of space-time observables. These analyses are often confined to
the simplified context of two-dimensional flat space-time and rely on a simple
procedure for the measurement of space-like distances based on the exchange of
light signals. We present a generalization of this measurement procedure
applicable to all three types of space-time intervals between two events in
space-times of any number of dimensions. We also present some preliminary
observations on an alternative measurement procedure that can be applied taking
into account the gravitational field of the measuring apparatus, and briefly
discuss quantum limitations of measurability in this context.Comment: 17 page
The orbit rigidity matrix of a symmetric framework
A number of recent papers have studied when symmetry causes frameworks on a
graph to become infinitesimally flexible, or stressed, and when it has no
impact. A number of other recent papers have studied special classes of
frameworks on generically rigid graphs which are finite mechanisms. Here we
introduce a new tool, the orbit matrix, which connects these two areas and
provides a matrix representation for fully symmetric infinitesimal flexes, and
fully symmetric stresses of symmetric frameworks. The orbit matrix is a true
analog of the standard rigidity matrix for general frameworks, and its analysis
gives important insights into questions about the flexibility and rigidity of
classes of symmetric frameworks, in all dimensions.
With this narrower focus on fully symmetric infinitesimal motions, comes the
power to predict symmetry-preserving finite mechanisms - giving a simplified
analysis which covers a wide range of the known mechanisms, and generalizes the
classes of known mechanisms. This initial exploration of the properties of the
orbit matrix also opens up a number of new questions and possible extensions of
the previous results, including transfer of symmetry based results from
Euclidean space to spherical, hyperbolic, and some other metrics with shared
symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure
Predictions of hadron abundances in pp collisions at the LHC
Based on the statistical hadronization model, we obtain quantitative
predictions for the relative abundances of hadron species in pp collisions at
the LHC. By using the parameters of the model determined at sqrt s = 200 GeV,
and extrapolating the overall normalization from ppbar collisions at the SPS
and Tevatron, we find that the expected rapidity densities are almost
grand-canonical. Therefore, at LHC the ratios between different species become
essentially energy-independent, provided that the hadronization temperature T_H
and the strangeness suppression factor gamma_S retain the stable values
observed in the presently explored range of pp and ppbar collisions.Comment: 4 pages. Final version published in JP
Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS
Production probabilities for strange clusters and strange matter in Au+Au
collisions at AGS energy are obtained in the thermal fireball model. The only
parameters of the model, the baryon chemical potential and temperature, were
determined from a description of the rather complete set of hadron yields from
Si+nucleus collisions at the AGS. For the production of light nuclear fragments
and strange clusters the results are similar to recent coalescence model
calculations. Strange matter production with baryon number larger than 10 is
predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures
The PreAmplifier ShAper for the ALICE TPC-Detector
In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber
(TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an
ASIC that integrates 16 identical channels, each consisting of Charge Sensitive
Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network,
two second-order bridged-T filters, two non-inverting level shifters and a
start-up circuit. The circuit is optimized for a detector capacitance of 18-25
pF. For an input capacitance of 25 pF, the PASA features a conversion gain of
12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of
11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit
recovers smoothly to the baseline in about 600 ns. An integral non-linearity of
0.19% with an output swing of about 2.1 V is also achieved. The total area of
the chip is 18 mm and is implemented in AMS's C35B3C1 0.35 micron CMOS
technology. Detailed characterization test were performed on about 48000 PASA
circuits before mounting them on the ALICE TPC front-end cards. After more than
two years of operation of the ALICE TPC with p-p and Pb-Pb collisions, the PASA
has demonstrated to fulfill all requirements
- …