38 research outputs found
Recommended from our members
Predicting Insulin Secretion Profiles for Immunoisolating Devices with Transplanted Islets
Recommended from our members
Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions
Recommended from our members
Biohybrid Devices and Encapsulation Technologies for Engineering a Bioartificial Pancreas
The use of cell-based treatments in the field of metabolic organs, particularly the pancreas, has seen tremendous growth in recent years. The transplantation of islet of Langerhans cells for the treatment of type 1 diabetes mellitus (T1DM) has allowed for natural glycemic control for patients plagued with hypoglycemia unawareness. The transplantation of islet cells into the portal vein of the liver, however, has presented challenges to the survival of the cells due to inflammation, vascularization, the need for systemic immunosuppression, and physical stress on the graft. New advances in the engineering of appropriate biohybrid devices and encapsulation technologies have led to promising alternatives to traditional methods
Recommended from our members
Tissue engineering and biomaterials in regenerative medicine
The field of regenerative medicine offers the potential to significantly impact a wide spectrum of healthcare issues, from diabetes to cardiovascular disease. In particular, the design of tailored biomaterials, which possess properties desired for their particular application, and the development of superior implant environments, which seek to meet the nutritional needs of the tissue, have yielded promising tissue engineering prototypes. In this commentary, we examine the novel approaches researchers have made in customized biomaterials and promoting angiogenesis that have led to significant advancements in recent years
Covalent stabilization of alginate hydrogel beads via Staudinger ligation: assessment of poly(ethylene glycol) and alginate cross-linkers
Cellular encapsulation within alginate hydrogel capsules has broad applications in tissue engineering. In seeking to improve the inherent instability of ionically cross-linked alginate hydrogels, we previously demonstrated the covalent stabilization of Ba(2+) cross-linked alginate-azide beads via chemoselective Staudinger ligation using a 1-methyl-2-diphenylphosphino-terephthalate (MDT) terminated poly(ethylene glycol) (PEG) linker. In this study, we functionalized variant PEG, linear and branched, and alginate polymers with MDT groups to evaluate the effect of size, structural design, number of functional groups, and charge on the resulting hydrogel bead. All cross-linkers resulted in enhanced covalent stabilization of alginate beads, with significant decreases in swelling and resistance to dissolution via Ba(2+) chelation. The MDT-functionalized alginate resulted in the most stable and homogeneous bead, with the most restrictive permeability even after EDTA exposure. Co-encapsulation of MIN6 cells within the cross-linked alginate hydrogel beads resulted in minimal effects on viability, whereas the degree of proliferation following culture varied with cross-linker type. Altogether, the results illustrate that manipulating the cross-linker structural design permits flexibility in resulting alginate beads characteristics. Covalent stabilization of alginate hydrogel beads with these chemoselective alginate and PEG-based cross-linkers provides a unique platform for cellular encapsulation
Bioorthogonal Layer-by-Layer Encapsulation of Pancreatic Islets via Hyperbranched Polymers
Encapsulation
of viable tissues via layer-by-layer polymer assembly provides a versatile
platform for cell surface engineering, with nanoscale control over
the capsule properties. Herein, we report the development of a hyperbranched
polymer-based, ultrathin capsule architecture expressing bioorthogonal
functionality and tailored physiochemical properties. Random carbodiimide-based
condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded
a highly branched polysaccharide with multiple, spatially restricted,
and readily functionalizable terminal carboxylate moieties. Poly(ethylene
glycol) (PEG) was utilized to link azido end groups to the structured
alginate. Together with a phosphine-functionalized poly(amidoamine)
dendrimer, nanoscale layer-by-layer coatings, covalently stabilized
via Staudinger ligation, were assembled onto solid surfaces and pancreatic
islets. The effects of electrostatic and/or bioorthogonal covalent
interlayer interactions on the resulting coating efficiency and stability,
as well as pancreatic islet viability and function, were studied.
These hyperbranched polymers provide a flexible platform for the formation
of covalently stabilized, ultrathin coatings on viable cells and tissues.
In addition, the hyperbranched nature of the polymers presents a highly
functionalized surface capable of bioorthogonal conjugation of additional
bioactive or labeling motifs
Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets
In type 1 diabetic patients, who have lost their ability to produce insulin, transplantation of pancreatic islet cells can normalize metabolic control in a manner that is not achievable with exogenous insulin. To be successful, this procedure has to address the problems caused by the immune and autoimmune responses to the graft. Islet encapsulation using various techniques and materials has been and is being extensively explored as a possible approach. Within this framework, it is of considerable interest to characterize the effect encapsulation has on the insulin response of pancreatic islets.
To improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets in general and of micro-encapsulated islets in particular, we performed dynamic perifusion experiments with frequent sampling. We used unencapsulated and microencapsulated murine islets in parallel and fitted the results with a complex local concentration-based finite element method (FEM) computational model.
The high-resolution dynamic perifusion experiments allowed good characterization of the first-phase and second-phase insulin secretion, and we observed a slightly delayed and blunted first-phase insulin response for microencapsulated islets when compared to free islets. Insulin secretion profiles of both free and encapsulated islets could be fitted well by a COMSOL Multiphysics model that couples hormone secretion and nutrient consumption kinetics with diffusive and convective transport. This model, which was further validated and calibrated here, can be used for arbitrary geometries and glucose stimulation sequences and is well suited for the quantitative characterization of the insulin response of cultured, perifused, transplanted, or encapsulated islets.
The present high-resolution GSIR experiments allowed for direct characterization of the effect microencapsulation has on the time-profile of insulin secretion. The multiphysics model, further validated here with the help of these experimental results, can be used to increase our understanding of the challenges that have to be faced in the design of bioartificial pancreas-type devices and to advance their further optimization
Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications
[Display omitted]
► Sought to optimize PFC emulsions for biomedical applications. ► Observed minimal cytotoxic effects of PFC emulsion components, except for perfluorooctylbromide. ► Evaluated PFC emulsion stability over time at room and body temperature. ► Correlated PFC particle size with oxygen mass transfer ability of the PFC emulsion. ► FC-43 PFC with Pluronic F-68/F-127 surfactant was the most optimal for oxygen transfer.
Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties