12 research outputs found

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Evaluation of MOS and Gated Diode Devices of the ATLAS ITk Test Chip

    No full text
    The new ATLAS Inner Tracker (ITk) sub-detector is necessitated by the impending High Luminosity Large Hadron Collider (HL-LHC) upgrade. This replacement is part of the phase-II upgrade programme for the HL-LHC which will see a sevenfold increase in peak instantaneous luminosity with a total ionizing dose of 53 MRad. The fully solid state ITk will employ silicon n^{+}-in-p microstrip sensors in the outer layers of the tracking detector. The main sensors are manufactured on 6” diameter silicon wafers. Periphery wafer area (halfmoons) to which the main sensor does not extend serves as convenient venues for the implementation of test devices. The primary utility of the test devices is Quality Assurance (QA), that is, the monitoring of the consistency and reliability of the manufacturing process. A Metal-Oxide-Semiconductor (MOS) and Gate-Controlled Diode (GCD) are two such test devices aimed at characterizing the surface oxide and silicon-oxide interface. Measurement procedures and parameters for QA are established for these devices and the viability of these tests for gamma irradiated samples is evaluated. The suitability of these devices to further monitor the strip sensor fabrication process is also investigated

    Initial Tests of Large Format Sensors for the ATLAS ITk Strip Tracker

    No full text
    For the production of the Inner Tracker (ITk) as part of the phase-II upgrade programme to prepare the ATLAS experiment for the High-Luminosity (HL) LHC, batches of Long Strip (LS) and Short Strip (SS) n-in-p type micro-strip sensors have been produced by Hamamatsu Photonics. The full size sensors measure approximately 98 x 98"mm^{2}" and are designed and engineered for tolerance against the 9.7 x "10^{14}", including a safety factor of 1.5, 1 MeV "n_{eq}/cm^{2}" fluence expected at the HL-LHC. Each sensor has 2 or 4 columns of 1280 individual channels arranged at 75.5ÎĽm horizontal pitch. To ensure the sensors comply with their specifications, a Quality Control (QC) procedure has been designed, comprising measurements on every individual sensor as well as on a sample basis. Every sensor is subjected to an initial visual inspection, after which the full surface of the sensor is captured with very high resolution by an automated camera setup. Non-contact metrology is performed to obtain the sensor surface profile. Electrical measurements establishing the reverse bias leakage current and depletion voltage are conducted automatically, with the recorded results uploaded to a production database following data quality checks. Sample sensors from every batch are subjected to 40 hour leakage stability checks in controlled atmosphere, and tests on every channel measuring leakage current, coupling capacitance and bias resistance are conducted. In this paper, QC test validation data and the compiled results for the first batches of production grade sensors, consisting of approximately 30 LS and SS sensors each are presented. Data from multiple test sites are compared with the data provided by Hamamatsu Photonics where possible. The QC protocol was validated, and the results of the first production sensors were confirmed to be within specification

    Gamma irradiation of ATLAS18 ITk strip sensors affected by static charge

    No full text
    Construction of the new all-silicon Inner Tracker (ITk), developed by the ATLAS collaboration to be able to track charged particles produced at the High-Luminosity LHC, started in 2021 and is expected to continue until 2028. The ITk detector will include ~18,000 highly segmented and radiation hard n+-in-p silicon strip sensors, which are being manufactured by Hamamatsu Photonics. Upon their delivery, the ATLAS ITk strip sensor collaboration performs detailed measurements of sensors to monitor quality of all fabricated pieces. QC electrical tests include current-voltage (IV) and capacitance-voltage (CV) tests, full strip tests, and a measurement of the long-term stability of the sensor leakage current. While most sensors demonstrate excellent performance during QC testing, we have nevertheless observed that a number of sensors from several production batches failed the electrical tests. Accumulated data indicates a strong correlation between observed electrical test failures and high electrostatic charge measured on the sensor surface during initial reception tests. This electrostatic charge enhances the risk of "Local trapped charge" events during manufacturing, shipping, and handling procedures, resulting in failed electrical QC tests. To mitigate the above-described issues, the QC testing institutes modified the sensor handling procedures and introduced sensor recovery techniques. Despite the implementation of various recovery techniques, it is still possible that some affected sensors will not be identified by the sensor QC testing, or that "Local trapped charge" events could occur in later manipulation stages of the sensor. In the presented study, we have investigated whether the total ionizing dose (TID) expected in the real experiment can effectively resolve early breakdown or low interstrip isolation caused by the electrostatic charge. Selected charge-affected sensors were irradiated with gamma rays from the 60Co source for a number of TID values. The results of this study indicate that the negative effects of the electrostatic charge on the critical sensors characteristics disappear after a very small amount of an accumulated TID, which actually corresponds to one or two days in the experiment. This finding gives us confidence in mitigating the issue of electrostatic charge during the operation of the ITk strip sensors in the real experiment

    Strip sensor performance in prototype modules built for ATLAS ITk

    No full text
    The ATLAS Phase-II Upgrade for the High-Luminosity LHC features replacement of the Inner Detector with an all-silicon Inner Tracker (ITk). The majority of the instrumented area in ITk is occupied by strip modules covering 165 m2. A vigorous R&D program has been on-going for many years to prepare for the scale of the project and to work out technical issues at all key components of the system, including the strip sensors, readout ASICs, hybrids, modules, and staves. In this submission we report on the performance of silicon strip sensors used in the last completed round of module prototyping. Over 80 modules were built and tested with electrical readout on the per-channel basis and the sensor performance was assessed. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was a rare observation of high noise on some channels, at the rate of about 3%. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and relationship with sensor-level quality control tests

    Analysis of humidity sensitivity of silicon strip sensors for ATLAS upgrade tracker, pre- and post-irradiation

    No full text
    The ATLAS collaboration is working on a major upgrade of the Inner-Tracker, able to withstand the extreme operational conditions expected for the forthcoming High-Luminosity Large Hadron Collider (HL-LHC) upgrade. During the prototyping phase of the new large area silicon strip sensors, the community observed a degradation of the breakdown voltage (down to 200-500 V from >= 1 kV in bias voltage) when the devices with final technology options were exposed to high humidity, recovering the electrical performance prior to the exposure after a short period in dry conditions [J. Fernandez-Tejero, et al., NIM A 978 (2020) 164406]. These findings helped to understand the humidity sensitivity of the new sensors, defining the optimal working conditions and handling recommendations during production testing. In 2020, the ATLAS strip sensor community started the pre-production phase, receiving the first sensors fabricated by Hamamatsu Photonics K.K. using the final layout design. The work presented here is focused on the analysis of the humidity sensitivity of production-like sensors with different surface properties, providing new results on their influence on the humidity sensitivity observed during the prototyping phase. Additionally, the new production strip sensors were exposed to short (days) and long (months) term exposures to high humidity. This study allows to recreate and evaluate the influence of the detector integration environment expected during the Long Shutdown 3 (LS3) in 2025, where the sensors will be exposed to ambient humidity for prolonged times. A subset of the production-like sensors were irradiated up to fluences expected at the end of the HL-LHC lifetime, allowing the study of the evolution of the humidity sensitivity and influence of the passivation layers on sensors exposed to extreme radiation conditions

    Analysis of humidity sensitivity of silicon strip sensors for ATLAS upgrade tracker, pre- and post-irradiation

    No full text
    During the prototyping phase of the new ATLAS ITk large area strip sensors, a degradation of the device breakdown voltage at high humidity was observed. Although the degradation was temporary, showing a fast recovery in dry conditions, the study of the influence of humidity on the sensor performance was critical to establish counter-measures and handling protocols during production testing in order to ensure the proper performance of the upgraded detector. The work presented here has the objective to study for the first time the breakdown voltage deterioration in presence of humidity of ATLAS ITk production layout sensors with different surface properties, before and after proton, neutron and gamma irradiations. The sensors were also exposed several days to high humidity with the aim to recreate and evaluate the influence of the detector integration environment expected during the Long Shutdown 3 (LS3) in 2025, where the sensors will be exposed to ambient humidity for prolonged times

    ATLAS ITk Strip Sensor Quality Control and Review of ATLAS18 Pre-Production Sensor Results

    No full text
    With the upgrade of the LHC to the High-Luminosity LHC (HL-LHC), the Inner Detector will be replaced with the new all-silicon ATLAS Inner Tracker (ITk) to maintain tracking performance in a high-occupancy environment and to cope with the increase in the integrated radiation dose. Comprising an active area of 165 m2165\,\mathrm{m^2}, the outer four layers in the barrel and six disks in the endcap region will host strip modules, built with single-sided micro-strip sensors and glued-on hybrids carrying the front-end electronics necessary for readout. The strip sensors are manufactured as n+^+-in-p devices from high-resistivity silicon in 8 different shapes, from square in the barrel staves to a stereo annulus wedge-shape in the endcap discs, developed to withstand a total fluence of 1.6×1015 neq/cm21.6 \times 10^{15}\,\mathrm{n_{eq}/cm^2} and a total ionising dose of 66 MRad66\,\mathrm{MRad}. In 2020 the ITk Strip Sensors project has transitioned into the pre-production phase, where 5% of the production volume, a total of 1101 ATLAS18 wafers, was produced by Hamamatsu Photonics. Before being shipped out for module building, the ATLAS18 main sensors were tested at different institutes in the collaboration for mechanical and electrical compliance with technical specifications, the quality control (QC), while fabrication parameters were verified using test structures from the same wafers, the quality assurance (QA). The sensor QC evaluation program, test results and statistics, as well as experience gained from pre-production will be summarised in this contribution

    ATLAS ITk strip sensor quality control procedures and testing site qualification

    No full text
    The high-luminosity upgrade of the Large Hadron Collider, scheduled to become operational in 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). Radiation hard n+-in-p micro-strip silicon sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. Production of the total amount of 22 000 ITk strip sensors has started in 2020 and will continue until 2025. The ATLAS ITk strip sensor collaboration has the responsibility to monitor the quality of the fabricated devices by performing detailed measurements of individual sensor characteristics and by comparing the obtained results with the tests done by the manufacturer. Dedicated Quality Control (QC) procedures were developed to check whether the delivered large-format sensors adhere to the ATLAS specifications. The institutes performing the QC testing of the pre-production and production ATLAS ITk strip sensors (QC sites) had to initially be qualified for multiple high-throughput tests by successfully completing Site Qualification process. The QC procedures and the qualification process are described in this paper

    Specifications and Pre-Production of n+-in-p Large-format Strip Sensors fabricated in 6-inch Silicon Wafers, ATLAS18, for Inner Tracker of ATLAS Detector for High-Luminosity Large Hadron Collider

    No full text
    The full volume of the inner tracker of the ATLAS experiment will be replaced with new all-Silicon detectors for HL-LHC. The strip detectors, in the radial extent of 40 to 100 cm, are made of four layers of cylindrical-structures in the barrel and six layers of disk-structures in the endcap section with 2 layers of strip sensors for stereo-viewing in each layer-structure. The corresponding area of strip sensors, at 165 m^2, will be covered with 10976 barrel and 6912 endcap sensors. A new approach is adopted to use p-type material to be more radiation-tolerant, making the readout in n-strips, so-called n+-in-p sensors, to cope with the fluence of 9.7×10^14 (1.6×10^15) 1-MeV neutron-equivalent (neq)/cm^2 and ionizing dose of 44 (66) Mrad at the maximum in the barrel (endcap in the parenthesis) section, for its lifetime including a safety factor of 1.5. The readout is AC-coupled and the strips are biased via Polysilicon resistors for all sensors. In the barrel sensors, the geometry is square, 9.8×9.8 cm^2, to have the largest area of sensor possible from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 µm and 4 or 2 rows of strip segments in two types of sensors, "short strips (SS)" for the inner 2 layers and "long strips (LS)" for the outer 2, respectively. In the endcap, we have designed roughly trapezoidal sensors with built-in stereo angle, curved edges along the circumference, and in 6 unique shapes in each radial extent, R0 to R5. The strips are in fan geometry, with a mean pitch of approximately 75 µm and 4 or 2 rows of strip segments. The sensors of this specification are labelled as "ATLAS18xx" where xx stands for SS, LS, Rx (x=0 to 5). With the specifications of mechanical features and electrical performance, CAD files for processing were laid out by following successful designs of ATLAS07, ATLAS12 and ATLAS17LS of the barrel sensors, and ATLAS12EC/R0 of the R0 endcap sensors, together with a number of optimizations. "Pre-Production" amount of 1041 wafers were fabricated and delivered with the tests carried out by vendor. The quality of the sensors was reviewed through the data as provided by the vendor. These sensors were used for establishing and exercising acceptance procedures, and subsequently to be used for pre-production of strip modules and layer structures
    corecore