12 research outputs found
Toward the Prediction and Control of Glass Transition Temperature For Donor-Acceptor Polymers
Semiconducting donorâacceptor (DâA) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)âbased DâA polymers with varied alkyl sideâchain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (T g) with increasing sideâchain length, which is further verified through coarseâgrained molecular dynamics simulations. Informed from experimental results, a massâperâflexible bond model is developed to capture such observation through a linear correlation between T g and polymer chain flexibility. Using this model, a wide range of backbone T g over 80 °C and elastic modulus over 400 MPa can be predicted for PDPPâbased polymers. This study highlights the important role of sideâchain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predict T g and elastic modulus of future new DâA polymers
Molecular Origin of Strain-Induced Chain Alignment In PDPP-Based Semiconducting Polymeric Thin Films
Donorâacceptor (DâA) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)-based DâA polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side-chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear-chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side-chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field-effect transistors. This study deconvolutes the alignment of different components within the thin-film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers
Molecular Origin of StrainâInduced Chain Alignment in PDPPâBased Semiconducting Polymeric Thin Films
Donorâacceptor (DâA) type semiconducting polymers have shown great potential for the application of deformable and stretchable electronics in recent decades. However, due to their heterogeneous structure with rigid backbones and long solubilizing side chains, the fundamental understanding of their molecular picture upon mechanical deformation still lacks investigation. Here, the molecular orientation of diketopyrrolopyrrole (DPP)-based DâA polymer thin films is probed under tensile deformation via both experimental measurements and molecular modeling. The detailed morphological analysis demonstrates highly aligned polymer crystallites upon deformation, while the degree of backbone alignment is limited within the crystalline domain. Besides, the aromatic ring on polymer backbones rotates parallel to the strain direction despite the relatively low overall chain anisotropy. The effect of side-chain length on the DPP chain alignment is observed to be less noticeable. These observations are distinct from traditional linear-chain semicrystalline polymers like polyethylene due to distinct characteristics of backbone/side-chain combination and the crystallographic characteristics in DPP polymers. Furthermore, a stable and isotropic charge carrier mobility is obtained from fabricated organic field-effect transistors. This study deconvolutes the alignment of different components within the thin-film microstructure and highlights that crystallite rotation and chain slippage are the primary deformation mechanisms for semiconducting polymers