14 research outputs found
Nonperturbative renormalization in a scalar model within Light-Front Dynamics
Within the covariant formulation of Light-Front Dynamics, in a scalar model
with the interaction Hamiltonian , we calculate
nonperturbatively the renormalized state vector of a scalar "nucleon" in a
truncated Fock space containing the , and sectors. The
model gives a simple example of non-perturbative renormalization which is
carried out numerically. Though the mass renormalization diverges
logarithmically with the cutoff , the Fock components of the "physical"
nucleon are stable when .Comment: 22 pages, 5 figure
Relativistic bound states in Yukawa model
The bound state solutions of two fermions interacting by a scalar exchange
are obtained in the framework of the explicitly covariant light-front dynamics.
The stability with respect to cutoff of the J= and J=
states is studied. The solutions for J= are found to be stable for
coupling constants below the critical value
and unstable above it. The asymptotic behavior of the
wave functions is found to follow a law. The coefficient
and the critical coupling constant are calculated from an
eigenvalue equation. The binding energies for the J= solutions
diverge logarithmically with the cutoff for any value of the coupling constant.
For a wide range of cutoff, the states with different angular momentum
projections are weakly split.Comment: 22 pages, 13 figures, .tar.gz fil
Glueballs in a Hamiltonian Light-Front Approach to Pure-Glue QCD
We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it.
The renormalization procedure is designed to produce a Hamiltonian that will
yield physical states that rapidly converge in an expansion in free-particle
Fock-space sectors. To make this possible, we use light-front field theory to
isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to
force its free-state matrix elements to quickly decrease as the difference of
the free masses of the states increases. The cutoff violates a number of
physical principles of light-front pure-glue QCD, including Lorentz covariance
and gauge covariance. This means that the operators in the Hamiltonian are not
required to respect these physical principles. However, by requiring the
Hamiltonian to produce cutoff-independent physical quantities and by requiring
it to respect the unviolated physical principles of pure-glue QCD, we are able
to derive recursion relations that define the Hamiltonian to all orders in
perturbation theory in terms of the running coupling. We approximate all
physical states as two-gluon states, and use our recursion relations to
calculate to second order the part of the Hamiltonian that is required to
compute the spectrum. We diagonalize the Hamiltonian using basis-function
expansions for the gluons' color, spin, and momentum degrees of freedom. We
examine the sensitivity of our results to the cutoff and use them to analyze
the nonperturbative scale dependence of the coupling. We investigate the effect
of the dynamical rotational symmetry of light-front field theory on the
rotational degeneracies of the spectrum and compare the spectrum to recent
lattice results. Finally, we examine our wave functions and analyze the various
sources of error in our calculation.Comment: 75 pages, 17 figures, 1 tabl
Two-Fermion Bound States within the Bethe-Salpeter Approach
To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we
propose a novel method related to the use of hyperspherical harmonics. We
suggest an appropriate extension to form a new basis of spin-angular harmonics
that is suitable for a representation of the vertex functions. We present a
numerical algorithm to solve the Bethe-Salpeter equation and investigate in
detail the properties of the solution for the scalar, pseudoscalar and vector
meson exchange kernels including the stability of bound states. We also compare
our results to the non relativistic ones and to the results given by light
front dynamics.Comment: 32 pages, XIII Tables, 8 figure
Glueball Spectroscopy in a Relativistic Many-Body Approach to Hadron Structure
A comprehensive, relativistic many-body approach to hadron structure is
advanced based on the Coulomb gauge QCD Hamiltonian. Our method incorporates
standard many-body techniques which render the approximations amenable to
systematic improvement. Using BCS variational methods, dynamic chiral symmetry
breaking naturally emerges and both quarks and gluons acquire constituent
masses. Gluonia are studied both in the valence and in the collective, random
phase approximations. Using representative values for the strong coupling
constant and string tension, calculated quenched glueball masses are found to
be in remarkable agreement with lattice gauge theory.Comment: 12 pages, 1 uuencoded ps figure, RevTe
A Light Front Treatment of the Nucleus-Implications for Deep Inelastic Scattering
A light front treatment of the nuclear wave function is developed and
applied, using the mean field approximation, to infinite nuclear matter. The
nuclear mesons are shown to carry about a third of the nuclear plus momentum,
p+; but their momentum distribution has support only at p+ =0, and the mesons
do not contribute to nuclear deep inelastic scattering. This zero mode effect
occurs because the meson fields are independent of space-time position.Comment: 11 pages, revtex, 1 figur
Application of Pauli-Villars Regularization and Discretized Light-Cone Quantization to a (3+1)-Dimensional Model
We apply Pauli-Villars regularization and discrete light-cone quantization to
the nonperturbative solution of a (3+1)-dimensional model field theory. The
matrix eigenvalue problem is solved for the lowest-mass state with use of the
complex symmetric Lanczos algorithm. This permits the calculation of each
Fock-sector wave function, and from these we obtain values for various
quantities, such as average multiplicities and average momenta of constituents,
structure functions, and a form factor slope.Comment: RevTex, 27 page
Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations
A relativistic light front formulation of nuclear dynamics is developed and
applied to treating infinite nuclear matter in a method which includes the
correlations of pairs of nucleons: this is light front Brueckner theory. We
start with a hadronic meson-baryon Lagrangian that is consistent with chiral
symmetry. This is used to obtain a light front version of a one-boson-exchange
nucleon-nucleon potential (OBEP). The accuracy of our description of the
nucleon-nucleon (NN) data is good, and similar to that of other relativistic
OBEP models. We derive, within the light front formalism, the Hartree-Fock and
Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear
matter saturation properties are reasonably well reproduced. We obtain a value
of the compressibility, 180 MeV, that is smaller than that of alternative
relativistic approaches to nuclear matter in which the compressibility usually
comes out too large. Because the derivation starts from a meson-baryon
Lagrangian, we are able to show that replacing the meson degrees of freedom by
a NN interaction is a consistent approximation, and the formalism allows one to
calculate corrections to this approximation in a well-organized manner. The
simplicity of the vacuum in our light front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the
nuclear wave function are obtained also, and aspects of the meson and nucleon
plus-momentum distribution functions are computed. We find that there are about
0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure
Light Front Treatment of Nuclei: Formalism and Simple Applications
A relativistic light front treatment of nuclei is developed by performing
light front quantization for a chiral Lagrangian. The energy momentum tensor
and the appropriate Hamiltonian are obtained. Three illustrations of the
formalism are made. (1) Pion-nucleon scattering at tree level is shown to
reproduce soft pion theorems. (2) The one boson exchange treatment of
nucleon-nucleon scattering is developed and shown (by comparison with previous
results of the equal time formulation) to lead to a reasonable description of
nucleon-nucleon phase shifts. (3) The mean field approximation is applied to
infinite nuclear matter, and the plus momentum distributions of that system are
studied. The mesons are found to carry a significant fraction of the plus
momentum, but are inaccessible to experiments.Comment: 48 pages, ReVTex, 3 .eps files included, submitted to Phys. Rev.