66 research outputs found

    Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+ 3 oxidation state) methyltransferase-knockout mice

    Get PDF
    Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50 mg/L As and As3mt-KO mice that cannot tolerate 50 mg/L As were exposed to 0, 15, 20, 25 or 30 mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%–68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure

    Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    Get PDF
    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry)

    Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues

    Get PDF
    Chronic ingestion of water containing inorganic arsenic (iAs) has been linked to a variety of adverse health effects, including cancer, hypertension and diabetes. Current evidence suggests that the toxic methylated trivalent metabolites of iAs, methylarsonous acid (MAs) and dimethylarsinous acid (DMAsIII) play a key role in the etiology of these diseases. Both MAs and DMAsIII have been detected in urine of subjects exposed to iAs. However, the rapid oxidation of DMAsIII and, to a lesser extent, MAsIII in oxygen-rich environments leads to difficulties in the analysis of these metabolites in samples of urine collected in population studies. Results of our previous work indicate that MAsIII and DMAsIII are relatively stable in a reducing cellular environment and can be quantified in cells and tissues. In the present study, we used the oxidation state-specific hydride generation-cryotrapping-atomic absorption spectroscopy (HG-CT-AAS) to examine the presence and stability of these trivalent metabolites in the liver of mice and in UROtsa/F35 cells exposed to iAs. Tri- and pentavalent metabolites of iAs were analyzed directly (without chemical extraction or digestion). Liver homogenates prepared in cold deionized water and cell culture medium and lysates were stored at either 0 °C or −80 °C for up to 22 days. Both MAsIII and DMAsIII were stable in homogenates stored at −80 °C. In contrast, DMAsIII in homogenates stored at 0 °C began to oxidize to its pentavalent counterpart after 1 day; MAsIII remained stable for at least 3 weeks under these conditions. MAsIII and DMAsIII generated in UROtsa/F35 cultures were stable for 3 weeks when culture media and cell lysates were stored at −80 °C. These results suggest that samples of cells and tissues represent suitable material for the quantitative, oxidation state-specific analysis of As in laboratory and population studies examining the metabolism or toxic effects of this metalloid

    Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Get PDF
    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAsIII) or its methylated trivalent metabolites, methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAsIII, MAsIII or DMAsIII inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAsIII and DMAsIII were more potent than iAsIII as GSIS inhibitors with estimated IC50≤0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAsIII, MAsIII or DMAsIII could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes

    Expression of AS3MT alters transcriptional profiles in human urothelial cells exposed to arsenite

    Get PDF
    Inorganic arsenic (iAs) is an environmental toxicant and human carcinogen. The enzymatic methylation of iAs that is catalyzed by arsenic (+3 oxidation state)-methyltransferase (AS3MT) generates reactive methylated intermediates that contribute to the toxic and carcinogenic effects of iAs. We have shown that clonal human urothelial cells (UROtsa/F35) that express rat AS3MT and methylate iAs are more susceptible to acute toxicity of arsenite (iAsIII) than parental UROtsa cells that do not express AS3MT and do not methylate iAs. The current work examines transcriptional changes associated with AS3MT expression and identifies specific categories of genes expressed in UROtsa and UROtsa/F35 cells in response to a 24-h exposure to 1 or 50 μM iAsIII. Here, the expression of 21,073 genes was assessed using Agilent Human 1A(V2) arrays. Venn analysis showed marked concentration-dependent differences between gene expression patterns in UROtsa and UROTsa/F35 cells exposed to iAsIII. Among 134 genes altered by exposure to subtoxic 1 μM iAsIII, only 14 were shared by both cell lines. Exposure to cytotoxic 50 μM iAsIII uniquely altered 1389 genes in UROtsa/F35 and 649 genes in UROtsa cells; 5033 altered genes were associated with the chemical alone. In UROtsa, but not UROtsa/F35 cells exposure to 1 μM iAsIII altered expression of genes associated with cell adhesion. In contrast, expression of genes involved in cell cycle regulation was significantly altered in UROtsa/F35 cells at this exposure level. At 50 μM iAsIII, pathways regulating cell cycle, cell death, transcription, and metabolism were affected in both cell lines. However, only Urotsa/F35 cells showed numerous G-protein and kinase pathway alterations as well as alterations in pathways involved in cell growth and differentiation. These data link the AS3MT-catalyzed methylation of iAs to specific genomic responses in human cells exposed to iAsIII. Further analysis of these responses will help to characterize the role of AS3MT-catalyzed methylation in modulation of iAsIII toxicity

    Direct Analysis of Methylated Trivalent Arsenicals in Mouse Liver by Hydride Generation-Cryotrapping-Atomic Absorption Spectrometry

    Get PDF
    Growing evidence suggest that the methylated trivalent metabolites of inorganic arsenic (iAs), methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), contribute to adverse effects of iAs exposure. However, the lack of suitable methods has hindered the quantitative analysis of MAsIII and DMAsIII in complex biological matrices. Here, we show that hydride generation-cryotrapping-atomic absorption spectrometry can quantify both MAsIII and DMAsIII in livers of mice exposed to iAs. No sample extraction is required, thus limiting MAsIII or DMAsIII oxidation prior to analysis. The limits of detection are below 6 ng As/g of tissue, making this method suitable even for studies examining low exposures to iAs

    Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water

    Get PDF
    BackgroundThe concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues.ObjectiveIn this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans.MethodsExfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12–17 pg As for analysis of As species in BECs.ResultsAll urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine.ConclusionThese results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs

    Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    Get PDF
    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has consistently detected MAsIII and DMAsIII, HPLC-ICP-MS analyses have provided inconsistent and contradictory results. This study compares the capacities of both methods to detect and quantify MAsIII and DMAsIII in an in vitro methylation system consisting of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosylmethionine as a methyl donor, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (iAsIII) or MAsIII as substrate. The results show that reversed-phase HPLC-ICP-MS can identify and quantify MAsIII and DMAsIII in aqueous mixtures of biologically relevant arsenical standards. However, HPLC separation of the in vitro methylation mixture resulted in significant losses of MAsIII, and particularly DMAsIII with total arsenic recoveries below 25%. Further analyses showed that MAsIII and DMAsIII bind to AS3MT or interact with other components of the methylation mixture, forming complexes that do not elute from the column. Oxidation of the mixture with H2O2 which converted trivalent arsenicals to their pentavalent analogs prior to HPLC separation increased total arsenic recoveries to ~95%. In contrast, HG-CT-AAS analysis found large quantities of methylated trivalent arsenicals in mixtures incubated with either iAsIII or MAsIII and provided high (>72%) arsenic recoveries. These data suggest that an HPLC-based analysis of biological samples can underestimate MAsIII and DMAsIII concentrations and that controlling for arsenic species recovery is essential to avoid artifacts

    The Role of Biomethylation in Toxicity and Carcinogenicity of Arsenic: A Research Update

    Get PDF
    Recent research of the metabolism and biological effects of arsenic has profoundly changed our understanding of the role of metabolism in modulation of toxicity and carcinogenicity of this metalloid. Historically, the enzymatic conversion of inorganic arsenic to mono- and dimethylated species has been considered a major mechanism for detoxification of inorganic arsenic. However, compelling experimental evidence obtained from several laboratories suggests that biomethylation, particularly the production of methylated metabolites that contain trivalent arsenic, is a process that activates arsenic as a toxin and a carcinogen. This article summarizes this evidence and provides new data on a) the toxicity of methylated trivalent arsenicals in mammalian cells, b) the effects of methylated trivalent arsenicals on gene transcription, and c) the mechanisms involved in arsenic methylation in animal and human tissues

    Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: Development of a mouse model for arsenic-induced diabetes

    Get PDF
    Previous epidemiologic studies found increased prevalences of type 2 diabetes mellitus in populations exposed to high levels of inorganic arsenic (iAs) in drinking water. Although results of epidemiologic studies in low-exposure areas or occupational settings have been inconclusive, laboratory research has shown that exposures to iAs can produce effects that are consistent with type 2 diabetes. The current paper reviews the results of laboratory studies that examined the effects of iAs on glucose metabolism and describes new experiments in which the diabetogenic effects of iAs exposure were reproduced in a mouse model. Here, weanling male C57BL/6 mice drank deionized water with or without the addition of arsenite (25 or 50 ppm As) for 8 weeks. Intraperitoneal glucose tolerance tests revealed impaired glucose tolerance in mice exposed to 50 ppm As, but not to 25 ppm As. Exposure to 25 and 50 ppm As in drinking-water resulted in proportional increases in the concentration of iAs and its metabolites in the liver and in organs targeted by type 2 diabetes, including pancreas, skeletal muscle and adipose tissue. Dimethylarsenic was the predominant form of As in the tissues of mice in both 25 and 50 ppm groups. Notably, the average concentration of total speciated arsenic in livers from mice in the 50 ppm group was comparable to the highest concentration of total arsenic reported in the livers of Bangladeshi residents who had consumed water with an order of magnitude lower level of iAs. These data suggest that mice are less susceptible than humans to the diabetogenic effects of chronic exposure to iAs due to a more efficient clearance of iAs or its metabolites from target tissues
    corecore