15 research outputs found

    The new Felsenkeller 5 MV underground accelerator

    Full text link
    The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3He({\alpha},{\gamma})7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,{\gamma})15O reaction and in emission profile by the 12C(p,{\gamma})13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C({\alpha},{\gamma})16O reaction. In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator. The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from {\gamma}-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50{\mu}A, beams of 1H+, 4He+ , and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of the 5th International Solar Neutrino Conference, Dresden/Germany, 11-14 June 2018, to appear on World Scientific -- updated version (Figure 2 and relevant discussion updated, co-author A. Domula added

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    S-Factor measurement of the

    Full text link
    Hydrogen rich solid targets have been developed and produced to investigate the 12C(p, γ)13N reaction in inverse kinematics. The SRIM simulation software has been used to determine the parameters for ion implantation in various materials. Nuclear Resonant Reacton Analysis (NRRA) with the resonant reaction 15N(p, αγ)12C has been carried out to measure the hydrogen content of the produced targets. Measurements of the produced targets at the energy range from Ecm = 577 keV down to Ecm = 191 keV, were performed at the 3-MV Tandetron of Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    S-Factor measurement of the 12C(p,γ)13N reaction in inverse kinematics

    Full text link
    Hydrogen rich solid targets have been developed and produced to investigate the 12C(p, γ)13N reaction in inverse kinematics. The SRIM simulation software has been used to determine the parameters for ion implantation in various materials. Nuclear Resonant Reacton Analysis (NRRA) with the resonant reaction 15N(p, αγ)12C has been carried out to measure the hydrogen content of the produced targets. Measurements of the produced targets at the energy range from Ecm = 577 keV down to Ecm = 191 keV, were performed at the 3-MV Tandetron of Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12C(α, γ)16O

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. The present contribution reviews the status of the project for a higher-energy underground accelerator in Felsenkeller, Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory. Two tunnels of the Felsenkeller site have recently been refurbished for the installation of a 5MV high-current Pelletron accelerator. Civil construction work has completed in March 2018. The accelerator will provide intense, 50 μA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity

    Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. The present contribution reviews the status of the project for a higher-energy underground accelerator in Felsenkeller, Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory. Two tunnels of the Felsenkeller site have recently been refurbished for the installation of a 5MV high-current Pelletron accelerator. Civil construction work has completed in March 2018. The accelerator will provide intense, 50 μA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity
    corecore