12 research outputs found

    A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans

    No full text
    Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women(1-4). A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified(5-9). We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families(9,10). Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease(11-14). Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P=0.00001, r.r. (relative risk)=2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P=0.0009, r.r.=3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans
    corecore