3 research outputs found

    Novel, genetically induced mouse model that recapitulates the histological morphology and immunosuppressive tumor microenvironment of metastatic peritoneal carcinomatosis

    No full text
    BackgroundPeritoneal carcinomatosis is a hallmark of advanced peritoneal tumor progression, particularly for tubal/ovarian high-grade serous carcinomas (HGSCs). Patients with peritoneal carcinomatosis have poor survival rates and are difficult to treat clinically due to widespread tumor dissemination in the peritoneal cavity.MethodsWe developed a clinically relevant, genetically induced, peritoneal carcinomatosis model that recapitulates the histological morphology and immunosuppressive state of the tumor microenvironment of metastatic peritoneal HGSCs by intraperitoneally injecting shp53, AKT, c-Myc, luciferase and sleeping beauty transposase, followed by electroporation (EP) in the peritoneal cavity of immunocompetent mice (intraperitoneal (IP)/EP mice).ResultsSimilar to the spread of human ovarian cancers, IP/EP mice displayed multiple tumor nodules attached to the surface of the abdomen. Histopathological analysis indicated that these tumors were epithelial in origin. These IP/EP mice also displayed a loss of CD3+ T cell infiltration in tumors, highly expressed inhibitory checkpoint molecules in tumor-infiltrating and global CD4+ and CD8+ T cells, and increased levels of transforming growth factor-β in the ascites, all of which contribute to the promotion of tumor growth.ConclusionsOverall, our tumor model recapitulates clinical peritoneal HGSC metastasis, which makes it ideal for preclinical drug screening, testing of immunotherapy-based therapeutics and studying of the tumor biology of peritoneal carcinomatosis

    Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor.

    No full text
    Bortezomib has been successful for treatment of multiple myeloma, but not against solid tumors, and toxicities of neuropathy, thrombocytopenia and the emergence of resistance have triggered efforts to find alternative proteasome inhibitors. Bis-benzylidine piperidones such as RA190 covalently bind ADRM1/RPN13, a ubiquitin receptor that supports recognition of polyubiquitinated substrates of the proteasome and their subsequent deububiqutination and degradation. While these candidate RPN13 inhibitors (iRPN13) show promising anticancer activity in mouse models of cancer, they have suboptimal drug-like properties. Here we describe Up284, a novel candidate iRPN13 possessing a central spiro-carbon ring in place of RA190's problematic piperidone core. Cell lines derived from diverse cancer types (ovarian, triple negative breast, colon, cervical and prostate cancers, multiple myeloma and glioblastoma) were sensitive to Up284, including several lines resistant to bortezomib or cisplatin. Up284 and cisplatin showed synergistic cytotoxicity in vitro. Up284-induced cytotoxicity was associated with mitochondrial dysfunction, elevated levels of reactive oxygen species, accumulation of very high molecular weight polyubiquitinated protein aggregates, an unfolded protein response and the early onset of apoptosis. Up284 and RA190, but not bortezomib, enhanced antigen presentation in vitro. Up284 cleared from plasma in a few hours and accumulated in major organs by 24 h. A single dose of Up284, when administered to mice intra peritoneally or orally, inhibited proteasome function in both muscle and tumor for >48 h. Up284 was well tolerated by mice in repeat dose studies. Up284 demonstrated therapeutic activity in xenograft, syngeneic and genetically-engineered murine models of ovarian cancer

    Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties.

    No full text
    We sought to design ubiquitin-proteasome system inhibitors active against solid cancers by targeting ubiquitin receptor RPN13 within the proteasome's 19S regulatory particle. The prototypic bis-benzylidine piperidone-based inhibitor RA190 is a michael acceptor that adducts Cysteine 88 of RPN13. In probing the pharmacophore, we showed the benefit of the central nitrogen-bearing piperidone ring moiety compared to a cyclohexanone, the importance of the span of the aromatic wings from the central enone-piperidone ring, the contribution of both wings, and that substituents with stronger electron withdrawing groups were more cytotoxic. Potency was further enhanced by coupling of a second warhead to the central nitrogen-bearing piperidone as RA375 exhibited ten-fold greater activity against cancer lines than RA190, reflecting its nitro ring substituents and the addition of a chloroacetamide warhead. Treatment with RA375 caused a rapid and profound accumulation of high molecular weight polyubiquitinated proteins and reduced intracellular glutathione levels, which produce endoplasmic reticulum and oxidative stress, and trigger apoptosis. RA375 was highly active against cell lines of multiple myeloma and diverse solid cancers, and demonstrated a wide therapeutic window against normal cells. For cervical and head and neck cancer cell lines, those associated with human papillomavirus were significantly more sensitive to RA375. While ARID1A-deficiency also enhanced sensitivity 4-fold, RA375 was active against all ovarian cancer cell lines tested. RA375 inhibited proteasome function in muscle for >72h after single i.p. administration to mice, and treatment reduced tumor burden and extended survival in mice carrying an orthotopic human xenograft derived from a clear cell ovarian carcinoma
    corecore