9 research outputs found

    MOLECULAR, GENETIC AND BIOCHEMICAL CHARACTERIZATION OF OLEIC ACID- AND GLYCEROL-MEDIATED SIGNALING IN PLANT DEFENSE

    Get PDF
    Oleic acid (18:1) is one of the important monounsaturated fatty acids, which is synthesized upon desaturation of stearic acid and this reaction is catalyzed by the SSI2 encoded stearoyl-acyl-carrier-protein-desaturase. A mutation in SSI2 leads to constitutive activation of salicylic acid (SA)-mediated defense responses. Consequently, these plants accumulate high levels of SA and show enhanced resistance to bacterial and oomycete pathogens. Replenishing 18:1 levels in ssi2 plants, via a second site mutation in GLY1 encoded glycerol-3-phosphate (G3P) dehydrogenase, suppresses all the ssi2-triggered phenotypes. Study of mechanism(s) underlying gly1-mediated suppression of ssi2 phenotypes showed that 18:1 levels are regulated via acylation with G3P and a balance between G3P and 18:1 is critical for the regulation of defense signaling pathways. To establish a role for 18:1 and G3P during host defense, interaction between Colletotrichum higginsianum and Arabidopsis was studied. Resistance to C. higginsianum correlated with host G3P levels. The gly1 plants showed increased susceptibility while act1 plants, defective in utilization of G3P, showed enhanced resistance. Plant overexpessing GLY1 showed enhanced resistance in both wild type as well as camalexin deficient backgrounds. Together, these results suggested that G3P conferred resistance acted downstream or independent of camalexin. Exogenous application of glycerol lowered 18:1 levels and produced ssi2-like phenotypes in wild-type plants. Furthermore, glycerol application or the ssi2 mutation produced similar phenotypes in fatty acid desaturation mutants and mutants defective in SA/resistance gene signaling. Expression studies showed that ssi2 phenotypes were likely due to increased expression of resistance genes. Epistatic analysis suggested that certain components of SA pathway had redundant function and were required for 18:1-regulated signaling

    Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling

    Get PDF
    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense

    SAG101 Forms a Ternary Complex with EDS1 and PAD4 and Is Required for Resistance Signaling against Turnip Crinkle Virus

    Get PDF
    EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance

    Role of Salicylic Acid and Fatty Acid Desaturation Pathways in ssi2-Mediated Signaling

    No full text
    Stearoyl-acyl carrier protein desaturase-mediated conversion of stearic acid to oleic acid (18:1) is the key step that regulates the levels of unsaturated fatty acids (FAs) in cells. Our previous work with the Arabidopsis (Arabidopsis thaliana) ssi2/fab2 mutant and its suppressors demonstrated that a balance between glycerol-3-phosphate (G3P) and 18:1 levels is critical for the regulation of salicylic acid (SA)- and jasmonic acid-mediated defense signaling in the plant. In this study, we have evaluated the role of various genes that have an impact on SA, resistance gene-mediated, or FA desaturation (FAD) pathways on ssi2-mediated signaling. We show that ssi2-triggered resistance is dependent on EDS1, PAD4, EDS5, SID2, and FAD7 FAD8 genes. However, ssi2-triggered defects in the jasmonic acid pathway, morphology, and cell death phenotypes are independent of the EDS1, EDS5, PAD4, NDR1, SID2, FAD3, FAD4, FAD5, DGD1, FAD7, and FAD7 FAD8 genes. Furthermore, the act1-mediated rescue of ssi2 phenotypes is also independent of the FAD2, FAD3, FAD4, FAD5, FAD7, and DGD1 genes. Since exogenous application of glycerol converts wild-type plants into ssi2 mimics, we also studied the effect of exogenous application of glycerol on mutants impaired in resistance-gene signaling, SA, or fad pathways. Glycerol increased SA levels and induced pathogenesis-related gene expression in all but sid2, nahG, fad7, and fad7 fad8 plants. Furthermore, glycerol-induced phenotypes in various mutant lines correlate with a concomitant reduction in 18:1 levels. Inability to convert glycerol into G3P due to a mutation in the nho1-encoded glycerol kinase renders plants tolerant to glycerol and unable to induce the SA-dependent pathway. A reduction in the NHO1-derived G3P pool also results in a partial age-dependent rescue of the ssi2 morphological and cell death phenotypes in the ssi2 nho1 plants. The glycerol-mediated induction of defense was not associated with any major changes in the lipid profile and/or levels of phosphatidic acid. Taken together, our results suggest that glycerol application and the ssi2 mutation in various mutant backgrounds produce similar effects and that restoration of ssi2 phenotypes is not associated with the further desaturation of 18:1 to linoleic or linolenic acids in plastidal or extraplastidal lipids

    Glycerol-3-Phosphate Levels Are Associated with Basal Resistance to the Hemibiotrophic Fungus Colletotrichum higginsianum in Arabidopsis1[W][OA]

    No full text
    Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thaliana) with C. higginsianum was correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in utilization of plastidial G3P (act1) accumulated elevated levels of pathogen-induced G3P and displayed enhanced resistance. Furthermore, overexpression of the host GLY1 gene, which encodes a G3P dehydrogenase (G3Pdh), conferred enhanced resistance. In contrast, the gly1 mutant accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Unlike gly1, a mutation in a cytosolic isoform of G3Pdh did not alter basal resistance to C. higginsianum. Furthermore, act1 gly1 double-mutant plants were as susceptible as the gly1 plants. Increased resistance or susceptibility of act1 and gly1 plants to C. higginsianum, respectively, was not due to effects of these mutations on salicylic acid- or ethylene-mediated defense pathways. The act1 mutation restored a wild-type-like response in camalexin-deficient pad3 plants, which were hypersusceptible to C. higginsianum. These data suggest that G3P-associated resistance to C. higginsianum occurs independently or downstream of the camalexin pathway. Together, these results suggest a novel and specific link between G3P metabolism and plant defense
    corecore