292 research outputs found

    Predicting Multi-actor collaborations using Hypergraphs

    Full text link
    Social networks are now ubiquitous and most of them contain interactions involving multiple actors (groups) like author collaborations, teams or emails in an organizations, etc. Hypergraphs are natural structures to effectively capture multi-actor interactions which conventional dyadic graphs fail to capture. In this work the problem of predicting collaborations is addressed while modeling the collaboration network as a hypergraph network. The problem of predicting future multi-actor collaboration is mapped to hyperedge prediction problem. Given that the higher order edge prediction is an inherently hard problem, in this work we restrict to the task of predicting edges (collaborations) that have already been observed in past. In this work, we propose a novel use of hyperincidence temporal tensors to capture time varying hypergraphs and provides a tensor decomposition based prediction algorithm. We quantitatively compare the performance of the hypergraphs based approach with the conventional dyadic graph based approach. Our hypothesis that hypergraphs preserve the information that simple graphs destroy is corroborated by experiments using author collaboration network from the DBLP dataset. Our results demonstrate the strength of hypergraph based approach to predict higher order collaborations (size>4) which is very difficult using dyadic graph based approach. Moreover, while predicting collaborations of size>2 hypergraphs in most cases provide better results with an average increase of approx. 45% in F-Score for different sizes = {3,4,5,6,7}

    Understanding Co-evolution in Large Multi-relational Social Networks

    Full text link
    Understanding dynamics of evolution in large social networks is an important problem. In this paper, we characterize evolution in large multi-relational social networks. The proliferation of online media such as Twitter, Facebook, Orkut and MMORPGs\footnote{Massively Multi-player Online Role Playing Games} have created social networking data at an unprecedented scale. Sony's Everquest 2 is one such example. We used game multi-relational networks to reveal the dynamics of evolution in a multi-relational setting by macroscopic study of the game network. Macroscopic analysis involves fragmenting the network into smaller portions for studying the dynamics within these sub-networks, referred to as `communities'. From an evolutionary perspective of multi-relational network analysis, we have made the following contributions. Specifically, we formulated and analyzed various metrics to capture evolutionary properties of networks. We find that co-evolution rates in trust based `communities' are approximately 60%60\% higher than the trade based `communities'. We also find that the trust and trade connections within the `communities' reduce as their size increases. Finally, we study the interrelation between the dynamics of trade and trust within `communities' and find interesting results about the precursor relationship between the trade and the trust dynamics within the `communities'

    Embarrassingly Simple MixUp for Time-series

    Full text link
    Labeling time series data is an expensive task because of domain expertise and dynamic nature of the data. Hence, we often have to deal with limited labeled data settings. Data augmentation techniques have been successfully deployed in domains like computer vision to exploit the use of existing labeled data. We adapt one of the most commonly used technique called MixUp, in the time series domain. Our proposed, MixUp++ and LatentMixUp++, use simple modifications to perform interpolation in raw time series and classification model's latent space, respectively. We also extend these methods with semi-supervised learning to exploit unlabeled data. We observe significant improvements of 1\% - 15\% on time series classification on two public datasets, for both low labeled data as well as high labeled data regimes, with LatentMixUp++

    Adversarial Unsupervised Representation Learning for Activity Time-Series

    Full text link
    Sufficient physical activity and restful sleep play a major role in the prevention and cure of many chronic conditions. Being able to proactively screen and monitor such chronic conditions would be a big step forward for overall health. The rapid increase in the popularity of wearable devices provides a significant new source, making it possible to track the user's lifestyle real-time. In this paper, we propose a novel unsupervised representation learning technique called activity2vec that learns and "summarizes" the discrete-valued activity time-series. It learns the representations with three components: (i) the co-occurrence and magnitude of the activity levels in a time-segment, (ii) neighboring context of the time-segment, and (iii) promoting subject-invariance with adversarial training. We evaluate our method on four disorder prediction tasks using linear classifiers. Empirical evaluation demonstrates that our proposed method scales and performs better than many strong baselines. The adversarial regime helps improve the generalizability of our representations by promoting subject invariant features. We also show that using the representations at the level of a day works the best since human activity is structured in terms of daily routinesComment: Accepted at AAAI'19. arXiv admin note: text overlap with arXiv:1712.0952

    Explain Variance of Prediction in Variational Time Series Models for Clinical Deterioration Prediction

    Full text link
    Missingness and measurement frequency are two sides of the same coin. How frequent should we measure clinical variables and conduct laboratory tests? It depends on many factors such as the stability of patient conditions, diagnostic process, treatment plan and measurement costs. The utility of measurements varies disease by disease, patient by patient. In this study we propose a novel view of clinical variable measurement frequency from a predictive modeling perspective, namely the measurements of clinical variables reduce uncertainty in model predictions. To achieve this goal, we propose variance SHAP with variational time series models, an application of Shapley Additive Expanation(SHAP) algorithm to attribute epistemic prediction uncertainty. The prediction variance is estimated by sampling the conditional hidden space in variational models and can be approximated deterministically by delta's method. This approach works with variational time series models such as variational recurrent neural networks and variational transformers. Since SHAP values are additive, the variance SHAP of binary data imputation masks can be directly interpreted as the contribution to prediction variance by measurements. We tested our ideas on a public ICU dataset with deterioration prediction task and study the relation between variance SHAP and measurement time intervals

    Filling out the missing gaps: Time Series Imputation with Semi-Supervised Learning

    Full text link
    Missing data in time series is a challenging issue affecting time series analysis. Missing data occurs due to problems like data drops or sensor malfunctioning. Imputation methods are used to fill in these values, with quality of imputation having a significant impact on downstream tasks like classification. In this work, we propose a semi-supervised imputation method, ST-Impute, that uses both unlabeled data along with downstream task's labeled data. ST-Impute is based on sparse self-attention and trains on tasks that mimic the imputation process. Our results indicate that the proposed method outperforms the existing supervised and unsupervised time series imputation methods measured on the imputation quality as well as on the downstream tasks ingesting imputed time series
    • …
    corecore