129 research outputs found

    Development of a Database for Drilled SHAft Foundation Testing (DSHAFT)

    Get PDF
    Drilled shafts have been used in the US for more than 100 years in bridges and buildings as a deep foundation alternative. For many of these applications, the drilled shafts were designed using the Working Stress Design (WSD) approach. Even though WSD has been used successfully in the past, a move toward Load Resistance Factor Design (LRFD) for foundation applications began when the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000.The policy memorandum requires all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. This ensures compatibility between the superstructure and substructure designs, and provides a means of consistently incorporating sources of uncertainty into each load and resistance component. Regionally-calibrated LRFD resistance factors are permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy and competitiveness of drilled shafts. To achieve this goal, a database for Drilled SHAft Foundation Testing (DSHAFT) has been developed. DSHAFT is aimed at assimilating high quality drilled shaft test data from Iowa and the surrounding regions, and identifying the need for further tests in suitable soil profiles. This report introduces DSHAFT and demonstrates its features and capabilities, such as an easy-to-use storage and sharing tool for providing access to key information (e.g., soil classification details and cross-hole sonic logging reports). DSHAFT embodies a model for effective, regional LRFD calibration procedures consistent with PIle LOad Test (PILOT) database, which contains driven pile load tests accumulated from the state of Iowa. PILOT is now available for broader use at the project website: http://srg.cce.iastate.edu/lrfd/. DSHAFT, available in electronic form at http://srg.cce.iastate.edu/dshaft/, is currently comprised of 32 separate load tests provided by Illinois, Iowa, Minnesota, Missouri and Nebraska state departments of transportation and/or department of roads. In addition to serving as a manual for DSHAFT and providing a summary of the available data, this report provides a preliminary analysis of the load test data from Iowa, and will open up opportunities for others to share their data through this quality–assured process, thereby providing a platform to improve LRFD approach to drilled shafts, especially in the Midwest region

    Verification of Recommended Load and Resistance Factor Design and Construction of Piles in Cohesive Soils

    Get PDF
    To enhance regional design and construction practices for driven piles, FHWA permitted the development of regional resistance factors for the design of foundation piles. By fitting allowable stress design safety factors to the load and resistance factor design (LRFD) framework, several state departments of transportation (DOTs), including the Iowa DOT, have adopted interim procedures. Subsequently, an LRFD procedure that incorporates setup was developed for piles in cohesive soils through comprehensive research in Iowa. The proposed LRFD procedure used an Iowa DOT in-house static analysis method and the wave equation analysis program for construction control. To verify the adequacy of the proposed procedure and investigate its economic implications, differences in pile design between the interim and the proposed LRFD procedures were evaluated on the basis of independent data collected from more than 600 production steel H-piles driven in cohesive soils. This study concluded that the proposed LRFD procedure would not significantly increase the design and construction costs. The incorporation of pile setup into the LRFD procedure was found to provide additional economic benefits. Although the current Iowa DOT policy is to drive piles to the contract length, if a suitable pile termination procedure were used once the desired resistance was achieved, a general saving of 20% in pile length would be anticipated for both procedures. Although the research and findings presented in this paper are specific to a local area, these methods could be adopted nationally to increase the efficiency of bridge foundations for all states

    Development of LRFD Procedures for Bridge Piles in Iowa—Volume IV: Design Guide and Track Examples

    Get PDF
    With the goal of producing engineered foundation designs with consistent levels of reliability as well as fulfilling the Federal Highway Administration (FHWA) mandate that all new bridges initiated after October 1, 2007 be designed according to the Load and Resistance Factor Design (LRFD) approach, the Iowa Highway Research Board (IHRB) sponsored three research projects on driven piles (TR-573, -583 and -584). The research outcomes are presented in three reports entitled Development of LRFD Design Procedures for Bridge Piles in Iowa, Volumes I, II, and III, and other research information is available on the project web site at http://srg.cce.iastate.edu/lrfd/. Upon incorporating the regional LRFD recommendations from the completed research into the Iowa DOT Bridge Design Manual (2010) as it is being rewritten under the new title of LRFD Bridge Design Manual (December 2011), and adopting the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications (2010), this Volume IV for driven piles in Iowa was developed. Following the layout of a design guide, the application of the LRFD approach is demonstrated using various pile design examples in three different tracks, which depend on the construction control method used for establishing the pile driving criteria. Piles are designed using the Iowa Blue Book method. The pile driving criteria are established using the Wave Equation Analysis Program (WEAP) in Track 1, the modified Iowa Engineering News Record (ENR) formula in Track 2, and the combination of WEAP and the Pile Driving Analyzer (PDA) with a subsequent pile signal matching analysis using the CAse Pile Wave Analysis Program (CAPWAP) in Track 3. The track examples cover various pile types, three different soil profiles (cohesive, non-cohesive, and mixed) and special design considerations (piles on rock, scouring, downdrag, and uplift)

    Improving the Accuracy of Camber Predictions for Precast Pretensioned Concrete Beams

    Get PDF
    The discrepancies between the designed and measured camber of precast pretensioned concrete beams (PPCBs) observed by the Iowa DOT have created challenges in the field during bridge construction, causing construction delays and additional costs. This study was undertaken to systematically identify the potential sources of discrepancies between the designed and measured camber from release to time of erection and improve the accuracy of camber estimations in order to minimize the associated problems in the field. To successfully accomplish the project objectives, engineering properties, including creep and shrinkage, of three normal concrete and four high-performance concrete mix designs were characterized. In parallel, another task focused on identifying the instantaneous camber and the variables affecting the instantaneous camber and evaluated the corresponding impact of this factor using more than 100 PPCBs. Using a combination of finite element analyses and the time-step method, the long-term camber was estimated for 66 PPCBs, with due consideration given to creep and shrinkage of concrete, changes in support location and prestress force, and the thermal effects. Utilizing the outcomes of the project, suitable long-term camber multipliers were developed that account for the time-dependent behavior, including the thermal effects. It is shown that by using the recommended practice for the camber measurements together with the proposed multipliers, the accuracy of camber prediction will be greatly improved. Consequently, it is expected that future bridge projects in Iowa can minimize construction challenges resulting from large discrepancies between the designed and actual camber of PPCBs during construction

    Structural Characterization of UHPC Waffle Bridge Deck and Connections

    Get PDF
    The AASHTO strategic plan in 2005 for bridge engineering identified extending the service life of bridges and accelerating bridge construction as two of the grand challenges in bridge engineering. These challenges have the objective of producing safer and more economical bridges at a faster rate with a minimum service life of 75 years and reduced maintenance cost to serve the country’s infrastructure needs. Previous studies have shown that a prefabricated full-depth precast concrete deck system is an innovative technique that accelerates the rehabilitation process of a bridge deck, extending its service life with reduced user delays and community disruptions and lowering its life-cycle costs. Previous use of ultra-high performance concrete (UHPC) for bridge applications in the United States has been considered to be efficient and economical because of its superior structural characteristics and durability properties. Full-depth UHPC waffle deck panel systems have been developed over the past three years in Europe and the United States. Subsequently, a single span, 60-ft long and 33-ft wide prototype bridge with full-depth prefabricated UHPC waffle deck panels has been designed and built for a replacement bridge in Wapello County, Iowa. The structural performance characteristics and the constructability of the UHPC waffle deck system and its critical connections were studied through an experimental program at the structural laboratory of Iowa State University (ISU). Two prefabricated full-depth UHPC waffle deck (8 feet by 9 feet 9 inches by 8 inches) panels were connected to 24-ft long precast girders, and the system was tested under service, fatigue, overload, and ultimate loads. Three months after the completion of the bridge with waffle deck system, it was load tested under live loads in February 2012. The measured strain and deflection values were within the acceptable limits, validating the structural performance of the bridge deck. Based on the laboratory test results, observations, field testing of the prototype bridge, and experience gained from the sequence of construction events such as panel fabrication and casting of transverse and longitudinal joints, a prefabricated UHPC waffle deck system is found to be a viable option to achieve the goals of the AASHTO strategic plan
    • …
    corecore