18 research outputs found

    Deep Metric Learning for Computer Vision: A Brief Overview

    Full text link
    Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data. Although cross-entropy-based loss formulations have been extensively used in a variety of supervised deep-learning applications, these methods tend to be less adequate when there is large intra-class variance and low inter-class variance in input data distribution. Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples by learning a representation function that maps these data samples into a representative embedding space. It leverages carefully designed sampling strategies and loss functions that aid in optimizing the generation of a discriminative embedding space even for distributions having low inter-class and high intra-class variances. In this chapter, we will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.Comment: Book Chapter Published In Handbook of Statistics, Special Issue - Deep Learning 48, 5

    CoNAN: Conditional Neural Aggregation Network For Unconstrained Face Feature Fusion

    Full text link
    Face recognition from image sets acquired under unregulated and uncontrolled settings, such as at large distances, low resolutions, varying viewpoints, illumination, pose, and atmospheric conditions, is challenging. Face feature aggregation, which involves aggregating a set of N feature representations present in a template into a single global representation, plays a pivotal role in such recognition systems. Existing works in traditional face feature aggregation either utilize metadata or high-dimensional intermediate feature representations to estimate feature quality for aggregation. However, generating high-quality metadata or style information is not feasible for extremely low-resolution faces captured in long-range and high altitude settings. To overcome these limitations, we propose a feature distribution conditioning approach called CoNAN for template aggregation. Specifically, our method aims to learn a context vector conditioned over the distribution information of the incoming feature set, which is utilized to weigh the features based on their estimated informativeness. The proposed method produces state-of-the-art results on long-range unconstrained face recognition datasets such as BTS, and DroneSURF, validating the advantages of such an aggregation strategy.Comment: Paper accepted at IJCB 202

    DIOR: Dataset for Indoor-Outdoor Reidentification -- Long Range 3D/2D Skeleton Gait Collection Pipeline, Semi-Automated Gait Keypoint Labeling and Baseline Evaluation Methods

    Full text link
    In recent times, there is an increased interest in the identification and re-identification of people at long distances, such as from rooftop cameras, UAV cameras, street cams, and others. Such recognition needs to go beyond face and use whole-body markers such as gait. However, datasets to train and test such recognition algorithms are not widely prevalent, and fewer are labeled. This paper introduces DIOR -- a framework for data collection, semi-automated annotation, and also provides a dataset with 14 subjects and 1.649 million RGB frames with 3D/2D skeleton gait labels, including 200 thousands frames from a long range camera. Our approach leverages advanced 3D computer vision techniques to attain pixel-level accuracy in indoor settings with motion capture systems. Additionally, for outdoor long-range settings, we remove the dependency on motion capture systems and adopt a low-cost, hybrid 3D computer vision and learning pipeline with only 4 low-cost RGB cameras, successfully achieving precise skeleton labeling on far-away subjects, even when their height is limited to a mere 20-25 pixels within an RGB frame. On publication, we will make our pipeline open for others to use

    Hear The Flow: Optical Flow-Based Self-Supervised Visual Sound Source Localization

    Full text link
    Learning to localize the sound source in videos without explicit annotations is a novel area of audio-visual research. Existing work in this area focuses on creating attention maps to capture the correlation between the two modalities to localize the source of the sound. In a video, oftentimes, the objects exhibiting movement are the ones generating the sound. In this work, we capture this characteristic by modeling the optical flow in a video as a prior to better aid in localizing the sound source. We further demonstrate that the addition of flow-based attention substantially improves visual sound source localization. Finally, we benchmark our method on standard sound source localization datasets and achieve state-of-the-art performance on the Soundnet Flickr and VGG Sound Source datasets. Code: https://github.com/denfed/heartheflow.Comment: Accepted to WACV 202

    Digital Image Enhancement using Normalization Techniques and their application to Palm Leaf Manuscripts

    No full text
    Palm leaves were one of the earliest forms of writing media and their use as writing material in South and Southeast Asia has been recorded from as early as the fifth century B.C. until as recently as the late 19th century. Palm leaf manuscripts relating to art and architecture, mathematics, astronomy, astrology, and medicine dating back several hundreds of years are still available for reference today thanks to many ongoing efforts for preservation of ancient documents by libraries and universities around the world. Palm leaf manuscripts typically last a few centuries but with time the palm leaves degrade and the writing becomes illegible to be useful in any form. Image processing techniques can help enhance the images of these manuscripts so as to enable retrieval of the written text from these degraded documents. In this paper we propose a set of transform based methods for enhancing digital images of palm leaf manuscripts. The methods first approximate the background of a gray scale image using one of two models – piece-wise linear or nonlinear models. The background approximations are designed to overcome unevenness of document background. Then the background normalization algorithms are applied to the component channel images of a color palm leaf image. We also propose two local adaptive normalization algorithms for extracting enhanced gray scale images from color palm leaf images. The techniques are tested on a set of palm leaf images from various sources and the preliminary results show significant improvement in readability. The techniques can also be used to enhance images of ancient, historical, degraded papyrus and paper documents

    Text Extraction from Gray Scale Historical Document Images Using Adaptive Local Connectivity Map

    No full text
    This paper presents an algorithm using adaptive local connectivity map for retrieving text lines from the complex handwritten documents such as handwritten historical manuscripts. The algorithm is designed for solving the particularly complex problems seen in handwritten documents. These problems include fluctuating text lines, touching or crossing text lines and low quality image that do not lend themselves easily to binarizations. The algorithm is based on connectivity features similar to local projection profiles, which can be directly extracted from gray scale images. The proposed technique is robust and has been tested on a set of complex historical handwritten documents such as Newton’s and Galileo’s manuscripts. A preliminary testing shows a successful location rate of above 95 % for the test set.
    corecore