180 research outputs found

    Discussion of: Brownian distance covariance

    Full text link
    Discussion on "Brownian distance covariance" by G\'abor J. Sz\'ekely and Maria L. Rizzo [arXiv:1010.0297]Comment: Published in at http://dx.doi.org/10.1214/09-AOAS312F the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal Rates for Random Fourier Features

    Full text link
    Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i) establishing optimal (in terms of the RFF dimension, and growing set size) performance guarantees in uniform norm, and (ii) presenting guarantees in LrL^r (1≀r<∞1\le r<\infty) norms. We also propose an RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.Comment: To appear at NIPS-201

    A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem

    Full text link
    In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as special cases. Unlike the β„“1\ell_1-norm approximation to the cardinality constraint, which previous methods have used in the context of sparse PCA, we propose a tighter approximation that is related to the negative log-likelihood of a Student's t-distribution. The problem is then framed as a d.c. (difference of convex functions) program and is solved as a sequence of convex programs by invoking the majorization-minimization method. The resulting algorithm is proved to exhibit \emph{global convergence} behavior, i.e., for any random initialization, the sequence (subsequence) of iterates generated by the algorithm converges to a stationary point of the d.c. program. The performance of the algorithm is empirically demonstrated on both sparse PCA (finding few relevant genes that explain as much variance as possible in a high-dimensional gene dataset) and sparse CCA (cross-language document retrieval and vocabulary selection for music retrieval) applications.Comment: 40 page

    Discussion of: Brownian distance covariance

    Full text link
    Discussion on "Brownian distance covariance" by G\'{a}bor J. Sz\'{e}kely and Maria L. Rizzo [arXiv:1010.0297]Comment: Published in at http://dx.doi.org/10.1214/09-AOAS312E the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore