8,181 research outputs found

    Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures

    Full text link
    We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.Comment: 8 pages, 5 figure

    Schwinger's Propagator Is Only A Green's Function

    Get PDF
    Schwinger used an analytic continuation of the effective action to correctly compute the particle production rate per unit volume for QED in a uniform electric field. However, if one simply evaluates the one loop expectation value of the current operator using his propagator, the result is zero! We analyze this curious fact from the context of a canonical formalism of operators and states. The explanation turns out to be that Schwinger's propagator is not actually the expectation value of the time-ordered product of field operators in the presence of a time-independent state, although it is of course a Green's function. We compute the true propagator in the presence of a state which is empty at x+=0x_+ = 0 where x+≡(x0+x3)/2x_+ \equiv (x^0+x^3)/\sqrt{2} is the lightcone evolution parameter. Our result can be generalized to electric fields which depend arbitrarily on x+x_+.Comment: 18 pages, LaTeX 2 epsilo

    Method of complex paths and general covariance of Hawking radiation

    Get PDF
    We apply the technique of complex paths to obtain Hawking radiation in different coordinate representations of the Schwarzschild space-time. The coordinate representations we consider do not possess a singularity at the horizon unlike the standard Schwarzschild coordinate. However, the event horizon manifests itself as a singularity in the expression for the semi-classical action. This singularity is regularized by using the method of complex paths and we find that Hawking radiation is recovered in these coordinates indicating the covariance of Hawking radiation. This also shows that there is no correspondence between the particles detected by the model detector and the particle spectrum obtained by the quantum field theoretic analysis -- a result known in other contexts as well.Comment: 9 pages, uses MPLA Style file, Accepted for publication in Mod. Phys. Letts.

    Aperture Supervision for Monocular Depth Estimation

    Full text link
    We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera's aperture as supervision. Prior works use a depth sensor's outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.Comment: To appear at CVPR 2018 (updated to camera ready version

    Chemoprofiling of Cucumis pubescens Willd. fruits

    Get PDF
    Cucumis pubescens, a notable therapeutic plant belonging to the Cucurbitaceae family is extensively utilized in South India’s habitual medicine. Despite its medicinal importance, the phytochemical content of this plant remains largely unexplored. The objective of the present study was to examine the phytochemical composition of the fruits of C. pubescens. Initially, HPLC analysis was employed to separate secondary metabolites, revealing seven major phytochemical fractions. The use of a suitable mobile phase system (Acetic acid: Acetonitrile: Water, 4:2:10) at 280 nm facilitated clear isolation. Subsequent spectral analyses confirmed the presence of bioactive compounds. UV-Vis spectral analysis indicated the abundance of flavonoids and tannins. The presence of functional groups, for instance, C=O (carbonyl), C-C (benzene), and Ar-C-H (aromatic hydrocarbon) were validated through FTIR. Further analysis through GC-MS identified 23 bioactive compounds, with quercetin and kaempferol being the predominant ones, followed by gallic acid and caffeic acid. The pharmacological activity of these compounds underscores the therapeutic potential of C. pubescens. In conclusion, this study highlights the rich chemical diversity of C. pubescens, suggesting its potential as a valuable medicinal species with pharmaceutical significance

    Linear and nonlinear optical spectroscopy of a strongly-coupled microdisk-quantum dot system

    Full text link
    A fiber taper waveguide is used to perform direct optical spectroscopy of a microdisk-quantum-dot system, exciting the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fiber coupling method also allows the examination of the system's steady-state nonlinear properties, where saturation of the cavity-QD response is observed for less than one intracavity photon.Comment: adjusted references, added minor clarification
    • …
    corecore