42 research outputs found
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
Physical and biological characterization of ferromagnetic fiber networks: Effect of fibrin deposition on short-term in vitro responses of human osteoblasts
Ferromagnetic fiber networks have the potential to deform in vivo imparting therapeutic levels of strain on in-growing periprosthetic bone tissue. 444 Ferritic stainless steel provides a suitable material for this application due to its ability to support cultures of human osteoblasts (HObs) without eliciting undue inflammatory responses from monocytes in vitro. In the present article, a 444 fiber network, containing 17 vol% fibers, has been investigated. The network architecture was obtained by applying a skeletonization algorithm to three-dimensional tomographic reconstructions of the fiber networks. Elastic properties were measured using low-frequency vibration testing, providing globally averaged properties as opposed to mechanical methods that yield only local properties. The optimal region for transduction of strain to cells lies between the ferromagnetic fibers. However, cell attachment, at early time points, occurs primarily on fiber surfaces. Deposition of fibrin, a fibrous protein involved in acute inflammatory responses, can facilitate cell attachment within this optimal region at early time points. The current work compared physiological (3 and 5g·L-1) and supraphysiological fibrinogen concentrations (10g·L-1), using static in vitro seeding of HObs, to determine the effect of fibrin deposition on cell responses during the first week of cell culture. Early cell attachment within the interfiber spaces was observed in all fibrin-containing samples, supported by fibrin nanofibers. Fibrin deposition influenced the seeding, metabolic activity, and early stage differentiation of HObs cultured in the fibrin-containing fiber networks in a concentration-dependant manner. While initial cell attachment for networks with fibrin deposited from low physiological concentrations was similar to control samples without fibrin deposition, significantly higher HObs attached onto high physiological and supraphysiological concentrations. Despite higher cell numbers with supraphysiological concentrations, cell metabolic activities were similar for all fibrinogen concentrations. Further, cells cultured on supraphysiological concentrations exhibited lower cell differentiation as measured by alkaline phosphatase activity at early time points. Overall, the current study suggests that physiological fibrinogen concentrations would be more suitable than supraphysiological concentrations for supporting early cell activity in porous implant coatings