2 research outputs found

    Spin re-orientation induced anisotropic magnetoresistance switching in LaCo0.5_{0.5}Ni0.5_{0.5}O3−δ_{3-\delta} thin films

    Full text link
    Realization of novel functionalities by tuning magnetic interactions in rare earth perovskite oxide thin films opens up exciting technological prospects. Strain-induced tuning of magnetic interactions in rare earth cobaltates and nickelates is of central importance due to their versatility in electronic transport properties. Here we reported the spin re-orientation induced switching of anisotropic magnetoresistance (AMR) and its tunability with strain in epitaxial LaCo0.5_{0.5}Ni0.5_{0.5}O3−δ_{3-\delta} thin films across the ferromagnetic transition. Moreover, with strain tuning, we could observe a two-fold to four-fold symmetry crossover in AMR across the magnetic transition temperature. The magnetization measurements revealed an onset of ferromagnetic transition around 50 K, and a further reduction in temperature showed a subtle change in the magnetization dynamics, which reduced the ferromagnetic long-range ordering and introduced glassiness in the system. X-ray absorption and X-ray magnetic circular dichroism spectroscopy measurements over Co and Ni L edges revealed the Co spin state transition below the magnetic transition temperature leading to the AMR switching and also the presence of Ni2+^{2+} and Co4+^{4+} ions evidencing the charge transfer from Ni to Co ions. Our work demonstrated the tunability of magnetic interactions mediated electronic transport in cobaltate-nickelate thin films, which is relevant in understanding Ni-Co interactions in oxides for their technological applications such as in AMR sensors

    Potential effects of essential oils in safeguarding the health and enhancing production performance of livestock animals: The current scientific understanding

    Get PDF
    The food sector competes in a cutthroat environment, and it constantly struggles to maintain or even grow its market share. For customer confidence and consumption to remain strong, consistent animal products are needed. The qualitative attributes of the derived goods appear to be improved by the addition of bioactive substances to food, such as essential oils (EOs), and consumers are shielded from the impacts of bacterial and oxidative deterioration. Due to the current controversy surrounding synthetic chemicals and their alleged carcinogenic potential, a substantial study has been done to find effective and safe substitutes. Aromatic plants and the corresponding EOs from them are considered natural products and are typically employed in ruminant nutrition. Since dietary supplementation has been demonstrated to be an easy and practical method to successfully suppress oxidative processes or microbial deterioration at their localized sites, the addition of EOs in animal diets is now becoming a regular practice. However, there is just a little amount of evidence supporting the notion that these compounds may improve nutrient absorption and gastrointestinal health. Additionally, a variety of factors affect how well EOs works in animal diets. These variables can be, on the one hand, the erratic composition, and the many additions to the diet, and, on the other hand, erratic animal genetic elements. Maximizing the use of EOs and creating high-quality products require a deeper understanding of the composition and activity of the gastrointestinal tract microbiota. Numerous EOs contain bioactive substances with the potential to serve as multifunctional feed supplements for animals, with impacts on growth performance, the digestive system, the growth of pathogenic bacteria, and lipid oxidation, among others. To establish their regular use in animal production and to determine their precise mechanism of action, more research is required. The potential advantages of EOs for livestock health and production are highlighted in the current article
    corecore