8 research outputs found
Recommended from our members
Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)
A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design
Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization
Backgrounds and aims The phytostabilization potential of plants is a direct function of their root systems. An experimental design was developed to investigate the impact of Cd and Zn on the root distribution and morphology of Lolium perenne and Trifolium repens. Methods Seedlings were transplanted into columns filled with washed quartz and irrigated daily with Cdor Zn-containing nutrient solutions during 1 month. Root biomass, root length density (RLD) and diameter were subsequently quantified as a function of depth. Pot experiments were also performed to quantify metal, lignin and structural polysaccharides concentrations as well as cell viability. Results Lolium perenne accumulated Cd and Zn in the roots whereas T. repens was unable to restrict heavy metal translocation. Cadmium and Zn reduced rooting depth and RLDbut induced thick shoot-borne roots in L. perenne. Cd-induced root swelling was related to lignification occurring in the exodermis and parenchyma of central cylinder. Hemicelluloses and lignin did not play a key role in root metal retention. Cadmium slightly reduced mean root cell viability whereas Zn increased this parameter in comparison to Cd. Conclusions Even though plant species like Lolium perenne and Trifolium repens may appear suitable for a phytostabilization scheme based on their shoot metal tolerance, exposure to toxic heavy metals drastically impairs their root distribution. This could jeopardize the setting up of phytostabilization trials. The metal-induced alterations of root system properties are clearly metal- and speciesspecific. At sites polluted with multiple metals, it is therefore recommended to first test their impact on the root system of multiple plant species so as to select the most appropriate species for each site
Beyond Molecular Recognition: Using a Repulsive Field to Tune Interfacial Valency and Binding Specificity between Adhesive Surfaces
Surface-bound biomolecular fragments enable “smart” materials to recognize cells and other particles in applications ranging from tissue engineering and medical diagnostics to colloidal and nanoparticle assembly. Such smart surfaces are, however, limited in their design to biomolecular selectivity. This feature article demonstrates, using a completely nonbiological model system, how specificity can be achieved for particle (and cell) binding, employing surface designs where immobilized nanoscale adhesion elements are entirely nonselective. Fundamental principles are illustrated by a model experimental system where 11 nm cationic nanoparticles on a planar negative silica surface interact with flowing negative silica microspheres having 1.0 and 0.5 μm diameters. In these systems, the interfacial valency, defined as the number of cross-bonds needed to capture flowing particles, is tunable through ionic strength, which alters the range of the background repulsion and therefore the effective binding strength of the adhesive elements themselves. At high ionic strengths where long-range electrostatic repulsions are screened, single surface-bound nanoparticles capture microspheres, defining the univalent regime. At low ionic strengths, competing repulsions weaken the effective nanoparticle adhesion so that multiple nanoparticles are needed for microparticle capture. This article discusses important features of the univalent regime and then illustrates how multivalency produces interfacial-scale selectivity. The arguments are then generalized, providing a possible explanation for highly specific cell binding in nature, despite the degeneracy of adhesion molecules and cell types. The mechanism for the valency-related selectivity is further developed in the context of selective flocculation in the colloidal literature. Finally, results for multivalent binding are contrasted with the current thinking for interfacial design and the presentation of adhesion moieties on engineered surfaces