6 research outputs found

    Flare induced penumbra formation in the sunspot of NOAA 10838

    Full text link
    We have observed formation of penumbrae on a pore in the active region NOAA10838 using Dunn Solar Telescope at NSO,Sunpot,USA. Simultaneous observations using different instruments (DLSP,UBF,Gband and CaK) provide us with vector magnetic field at photosphere, intensity images and Doppler velocity at different heights from photosphere to chromosphere. Results from our analysis of this particular data-set suggests that penumbrae are formed as a result of relaxation of magnetic field due to a flare happening at the same time. Images in \Halpha\ show the flare (C 2.9 as per GOES) and vector magnetic fields show a re-orientation and reduction in the global α\alpha value (a measure of twist). We feel such relaxation of loop structures due to reconnections or flare could be one of the way by which field lines fall back to the photosphere to form penumbrae.Comment: 4 pages, Presented at IAU symposium 273- Physics of Sun and Starspot

    Automatic Detection of Magnetic δ in Sunspot Groups

    Get PDF
    Large and magnetically complex sunspot groups are known to be associated with flares. To date, the Mount Wilson scheme has been used to classify sunspot groups based on their morphological and magnetic properties. The most flare-prolific class, the δ sunspot group, is characterised by opposite-polarity umbrae within a common penumbra, separated by less than 2∘. In this article, we present a new system, called the Solar Monitor Active Region Tracker-Delta Finder (SMART-DF), which can be used to automatically detect and classify magnetic δ s in near-realtime. Using continuum images and magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard NASA’s Solar Dynamics Observatory (SDO), we first estimate distances between opposite-polarity umbrae. Opposite-polarity pairs with distances of less that 2∘ are then identified, and if these pairs are found to share a common penumbra, they are identified as a magnetic δ configuration. The algorithm was compared to manual δ detections reported by the Space Weather Prediction Center (SWPC), operated by the National Oceanic and Atmospheric Administration (NOAA). SMART-DF detected 21 out of 23 active regions (ARs) that were marked as δ spots by NOAA during 2011 – 2012 (within ±60∘ longitude). SMART-DF in addition detected five ARs that were not announced as δ spots by NOAA. The near-realtime operation of SMART-DF resulted in many δ s being identified in advance of NOAA’s daily notification. SMART-DF will be integrated into SolarMonitor ( www.solarmonitor.org ) and the near-realtime information will be available to the public

    Seeing-Induced Errors in Solar Doppler Velocity Measurements

    Full text link
    Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earth's atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km/s It is also shown that adaptive optics, in general, helps in minimising this effect.Comment: 14 page
    corecore