48 research outputs found

    Patient-friendly integrated first trimester screening by NIPT and fetal anomaly scan

    Get PDF
    Many major structural fetal anomalies can be diagnosed by first trimester fetal anomaly scan. NIPT can accurately detect aneuploidies and large chromosomal aberrations in cfDNA in maternal blood plasma. This study shows how a patient-friendly first trimester screening for both chromosomal and structural fetal anomalies in only two outpatient visits can be provided. Genotype-first approach assures not only the earliest diagnosis of trisomy 21 (the most prevalent chromosome aberration), but also completion of the screening at 12–14 weeks. To ensure proper management and avoid unnecessary anxiety abnormal NIPT different from trisomy 21, 18 and 13 should be referred for genetic counseling

    Abnormal non-invasive prenatal test results concordant with karyotype of cytotrophoblast but not reflecting abnormal fetal karyotype

    No full text
    We present a unique case in which non-invasive and invasive prenatal diagnoses showed abnormal, but discordant, results. A patient with abnormal non-invasive prenatal test (NIPT) results, indicating a 99% risk for monosomy X, was referred to our center for genetic counseling and confirmatory studies. Cytogenetic analysis of uncultured mesenchymal core of chorionic villi (CV) revealed a mosaic male karyotype consisting of two abnormal cell lines: one with monosomy X and the other with an isodicentric chromosome Y. Array analysis of the trophoblast confirmed the NIPT results. Based on the CV results, the patient opted for termination of pregnancy. After extensive counseling by a clinical geneticist about the possible outcomes and by a gynecologist about the risk of a second-trimester abortion procedure, the patient agreed to undergo early amniocentesis. Amniocentesis confirmed that the fetus had a male karyotype with an isodicentric chromosome Y, and the single nucleotide polymorphism (SNP) array profile suggested absence of the monosomy X cell line. The male infant was expected to be infertile. The patient finally decided to continue the pregnancy. Our case confirms that NIPT results are comparable with those of short-term cultured CV investigating the cytotrophoblast. Our patient was not aware that the NIPT results reveal the placental karyotype, which sometimes may be different from the fetal karyotype. Pretest counseling and providing the risk figures for false-positive and false-negative NIPT results are of great importance in order to discourage women from terminating pregnancies based on NIPT results alone. Copyright (C) 2014 ISUOG. Published by John Wiley & Sons Ltd

    Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature

    No full text
    Objective To establish the prevalence of submicroscopic genetic copy number variants (CNVs) in fetuses with a structural ultrasound anomaly (restricted to one anatomical system) and a normal karyotype. The aim was to determine the diagnostic and prognostic value of genomic array testing in these pregnancies. Methods Embase and PubMed databases were systematically searched for all relevant articles on prevalence of pathogenic submicroscopic CNVs in fetuses with ultrasound anomalies. Reported cases were sorted into groups according to anatomical site of the detected ultrasound anomaly. The prevalence of causative submicroscopic CNVs was calculated for each group. Results Combined data of the reviewed studies (n=18) indicated that fetuses with an ultrasound anomaly restricted to one anatomical system (n=2220) had a 3.1-7.9% chance of carrying a causative submicroscopic CNV, depending on the anatomical system affected. This chance increased to 9.1% for fetuses with multiple ultrasound anomalies (n=1139). Conclusion This review indicates that 3.1-7.9% of fetuses with a structural ultrasound anomaly restricted to one anatomical system and a normal karyotype will show a submicroscopic CNV, which explains its phenotype and provides information for fetal prognosis. Therefore, we conclude that microarray has considerable diagnostic and prognostic value in these pregnancies. Copyright (C) 2013 ISUOG. Published by John Wiley & Sons Ltd

    Prenatal screening of sialic acid storage disease and confirmation in cultured fibroblasts by LC-MS/MS

    No full text
    Sialic acid storage disease (SASD) is an inborn error resulting from defects in the lysosomal membrane protein sialin. The SASD phenotypical spectrum ranges from a severe presentation, infantile sialic acid storage disease (ISSD) which may present as hydrops fetalis, to a relatively mild form, Salla disease. Screening for SASD is performed by determination of free sialic acid (FSA) in urine or amniotic fluid supernatant (AFS). Subsequent diagnosis of SASD is performed by quantification of FSA in cultured fibroblasts and by mutation analysis of the sialin gene, SLC17A5. We describe simple quantitative procedures to determine FSA as well as conjugated sialic acid in AFS, and FSA in cultured fibroblasts, using isotope dilution ((13)C(3)-sialic acid) and multiple reaction monitoring LC-ESI-MS/MS. The whole procedure can be performed in 2-4 h. Reference values in AFS were 0-8.2 mu mol/L for 15-25 weeks of gestation and 3.2-12.0 mu mol/L for 26-38 weeks of gestation. In AFS samples from five fetuses affected with ISSD FSA was 23.9-58.9 mu mol/L demonstrating that this method is able to discriminate ISSD pregnancies from normal ones. The method was also validated for determination of FSA in fibroblast homogenates. FSA in SASD fibroblasts (ISSD; 20-154 nmol/mg protein, intermediate SASD; 12.9-15.1 nmol/mg, Salla disease; 5.9-7.4 nmol/mg) was clearly elevated compared to normal controls (0.3-2.2 nmol/mg). In conclusion, we report simple quantitative procedures to determine FSA in AFS and cultured fibroblasts improving both prenatal diagnostic efficacy for ISSD as well as confirmatory testing in cultured fibroblasts following initial screening in urine or AFS
    corecore