176 research outputs found
Secure positioning in wireless networks
So far, the problem of positioning in wireless networks has been studied mainly in a nonadversarial setting. In this paper, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call verifiable multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations
Using Hover to Compromise the Confidentiality of User Input on Android
We show that the new hover (floating touch) technology, available in a number
of today's smartphone models, can be abused by any Android application running
with a common SYSTEM_ALERT_WINDOW permission to record all touchscreen input
into other applications. Leveraging this attack, a malicious application
running on the system is therefore able to profile user's behavior, capture
sensitive input such as passwords and PINs as well as record all user's social
interactions. To evaluate our attack we implemented Hoover, a proof-of-concept
malicious application that runs in the system background and records all input
to foreground applications. We evaluated Hoover with 40 users, across two
different Android devices and two input methods, stylus and finger. In the case
of touchscreen input by finger, Hoover estimated the positions of users' clicks
within an error of 100 pixels and keyboard input with an accuracy of 79%.
Hoover captured users' input by stylus even more accurately, estimating users'
clicks within 2 pixels and keyboard input with an accuracy of 98%. We discuss
ways of mitigating this attack and show that this cannot be done by simply
restricting access to permissions or imposing additional cognitive load on the
users since this would significantly constrain the intended use of the hover
technology.Comment: 11 page
Securing Localization With Hidden and Mobile Base Stations
Abstract — Until recently, the problem of localization in wireless networks has been mainly studied in a non-adversarial setting. Only recently, a number of solutions have been proposed that aim to detect and prevent attacks on localization systems. In this work, we propose a new approach to secure localization based on hidden and mobile base stations. Our approach enables secure localization with a broad spectrum of localization techniques: ultrasonic or radio, based on received signal strength or signal time of flight. Through several examples we show how this approach can be used to secure node-centric and infrastructurecentric localization schemes. We further show how this approach can be applied to secure localization in sensor networks. I
SECTOR: Secure Tracking of Node Encounters in Multi-hop Wireless Networks
In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based on last encounters (with only loose clock synchronization), and to control the topology of the network. SECTOR is based primarily on distance-bounding techniques, on one-way hash chains and on Merkle hash trees. We analyze the communication, computation and storage complexity of the proposed mechanisms and we show that, due to their efficiency and simplicity, they are compliant with the limited resources of most mobile devices
Mobility Helps Peer-to-Peer Security
We propose a straightforward technique to provide peer-to-peer security in mobile networks. We show that far from being a hurdle, mobility can be exploited to set up security associations among users. We leverage on the temporary vicinity of users, during which appropriate cryptographic protocols are run. We illustrate the operation of the solution in two scenarios, both in the framework of mobile ad hoc networks. In the first scenario, we consider fully self-organized security: users authenticate each other by visual contact and by the activation of an appropriate secure side channel of their personal device; we show that the process can be fuelled by taking advantage of trusted acquaintances In the second scenario, we assume the presence of an off-line certification authority and we show how mobility helps to solve the security-routing interdependency cycle; in this case, the security protocol runs over one-hop radio links. We then show that the proposed solution is generic: it can be deployed on any mobile network and it can be implemented either with symmetric or with asymmetric cryptography. We provide a detailed performance analysis by studying the behavior of the solution on various mobility models
- …