15 research outputs found

    Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption

    Get PDF
    Hepcidin is a liver-derived antimicrobial peptide that regulates iron absorption and is also an integral part of the acute phase response. In a previous report, we found evidence that this peptide could also be induced by toxic heavy metals and xenobiotics, thus broadening its teleological role as a defensin. However it remained unclear how its sensing of disparate biotic and abiotic stressors might be integrated at the transcriptional level. We hypothesized that its function in cytoprotection may be regulated by NFE2-related factor 2 (Nrf2), the master transcriptional controller of cellular stress defenses. In this report, we show that hepcidin regulation is inextricably linked to the acute stress response through Nrf2 signaling. Nrf2 regulates hepcidin expression from a prototypical antioxidant response element in its promoter, and by synergizing with other basic leucine-zipper transcription factors. We also show that polyphenolic small molecules or phytoestrogens commonly found in fruits and vegetables including the red wine constituent resveratrol can induce hepcidin expression in vitro and post-prandially, with concomitant reductions in circulating iron levels and transferrin saturation by one such polyphenol quercetin. Furthermore, these molecules derepress hepcidin promoter activity when its transcription by Nrf2 is repressed by Keap1. Taken together, the data show that hepcidin is a prototypical antioxidant response or cytoprotective gene within the Nrf2 transcriptional circuitry. The ability of phytoestrogens to modulate hepcidin expression in vivo suggests a novel mechanism by which diet may impact iron homeostasis

    The role of iron in the skin and cutaneous wound healing.

    Get PDF
    In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS) generated in the skin by ultraviolet (UVA) 320-400 nm portion of the UVA spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anemia on wound healing using a variety of experimental methodology to establish anemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialization. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localized iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary hemochromatosis. Iron plays a key role in chronic ulceration and conditions such as rheumatoid arthritis (RA) and Lupus Erythematosus are associated with both anemia of chronic disease and dysregulation of local cutaneous iron hemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation

    Interaction between soluble and membrane-embedded potassium channel peptides monitored by Fourier transform infrared spectroscopy.

    Get PDF
    Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4-S6 of the Shaker Kv channel (KV1; including the S4-S5 linker "pre-inactivation" ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm(-1)) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4-S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction

    Divalent metal inhibition of non-haem iron uptake across the rat duodenal brush border membrane

    Get PDF
    Duodenal Fe2+ uptake is essential to body Fe2+ homeostasis, but the interaction of metals with the uptake process remains unclear. The present study compared the effects of four essential trace metals (Mn2+, Zn2+, Co2+ and Ni2+) with two toxic metals (Pb2+ and Cd2+) on Fe2+ uptake across the brush border membrane of villus-attached duodenal enterocytes. Everted rat duodenum was exposed to buffer containing 0.2 mm-Fe-59(2+)-ascorbate with or without the competing metal (2 mm) and the tissue was then processed for autoradiography allowing Fe2+ uptake to be determined at specific crypt-villus regions. The quantification method ensured that uptake by cells, rather than Fe2+ binding to the tissue surface, was measured. Fe2+ uptake was significantly inhibited by Cd2+ in upper villus enterocytes only and Pb2+ was without effect on Fe2+ uptake. The inhibition by Cd2+ was not due to general cell damage as judged by the release of lactate dehydrogenase from tissue into incubation fluid. Essential divalent trace metals reduced uptake significantly along the whole length of the crypt-villus axis. Cd2+ uptake, measured separately, took place at all regions of the villus-crypt axis, highest uptake being into crypt enterocytes. The very different uptake profiles for Cd2+ and Fe2+ suggests that the divalent metal transporter 1 is not the principal transporter of Cd2+. The addition of Fe2+ to incubation buffer inhibited Cd2+ uptake by both crypt and villus enterocytes. The possibility that the inhibitory actions of Fe2+ and Cd2+ on the uptakes of Cd2+ and Fe2+ respectively can be explained by a non-competitive action or the involvement of an additional metal transporter is discussed

    Distribution of [3H]trans-resveratrol in rat tissues following oral administration

    Get PDF
    Resveratrol has been widely investigated for its potential health properties, although little is known about its metabolism in vivo. Here we investigated the distribution of metabolic products of [H-3]trans-resveratrol, following gastric administration. At 2 h, plasma concentrations reached 1 center dot 7 % of the administered dose, whilst liver and kidney concentrations achieved 1 center dot 0 and 0 center dot 6 %, respectively. Concentrations detected at 18 h were lower, being only 0 center dot 5 % in plasma and a total of 0 center dot 35 % in tissues. Furthermore, whilst kidney and liver concentrations fell to 10 and 25 %, respectively, of concentrations at 2 h, the brain retained 43 % of that measured at 2 h. Resveratrol-glucuronide was identified as the major metabolite, reaching 7 mu m in plasma at 2 h. However, at 18 h the main form identified in liver, heart, lung and brain was native resveratrol aglycone, indicating that it is the main form retained in the tissues. No phenolic degradation products were detected in urine or tissues, indicating that, unlike flavonoids, resveratrol does not appear to serve as a substrate for colonic microflora. The present study provides additional information about the nature of resveratrol metabolites and which forms might be responsible for its in vivo biological effects

    Extensive Anti-CoA Immunostaining in Alzheimer’s Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H_{2}O_{2}-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions

    Publisher Correction: Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease)

    Get PDF
    Correction to: Scientific Reports https://doi.org/10.1038/s41598-018-27107-8, published online 19 June 201

    Iron uptake and transport across physiological barriers

    Full text link

    Tumour necrosis factor alpha downregulates human hemojuvelin expression via a novel response element within its promoter

    Get PDF
    Abstract Background Iron homeostasis is chiefly regulated by hepcidin whose expression is tightly controlled by inflammation, iron stores, and hypoxia. Hemojuvelin (HJV) is a bone morphogenetic protein co-receptor that has been identified as a main upstream regulator of hepcidin expression; HJV mutations are associated with a severe form of iron overload (Juvenile haemochromatosis). Currently however, there is no information on how HJV is regulated by inflammation. Methods To study the regulation of Hjv expression by inflammation and whether Hfe has a role in that regulation, control and LPS-injected wild type and Hfe KO mice were used. Moreover, human hepatoma cells (HuH7) were used to study the effect of IL-6 and TNF-α on HJV mRNA expression. Results Here we show that LPS repressed hepatic Hjv and BMPs, while it induced hepcidin 1 expression in wild-type and Hfe KO mice with no effect on hepatic pSMAD 1, 5, 8 protein levels. In addition, exogenous TNF-α (20 ng/mL) decreased HJV mRNA and protein expression to 40% of control with no effect on hepcidin mRNA expression in 24 hours. On the other hand, IL-6 induced hepcidin mRNA and protein expression with no effect on HJV mRNA expression levels. Moreover, using the HJV promoter-luciferase reporter fusion construct (HJVP1.2-luc), we showed that the basal luciferase activity of HJVP1.2-luc was inhibited by 33% following TNF-α treatment of HuH7 transfected cells suggesting that the TNF-α down-regulation is exerted at the transcriptional level. Additionally, mutation of a canonical TNF- alpha responsive element (TNFRE) within HJVP1.2-luc abolished TNF-α response suggesting that this TNFRE is functional. Conclusions From these results, we conclude that TNF-α suppresses HJV transcription possibly via a novel TNFRE within the HJV promoter. In addition, the results suggest that the proposed link between inflammation and BMP-SMAD signalling is independent of HJV and BMP ligands.</p
    corecore