3 research outputs found

    SAMBA: A Trainable Segmentation Web-App with Smart Labelling

    Full text link
    Segmentation is the assigning of a semantic class to every pixel in an image and is a prerequisite for various statistical analysis tasks in materials science, like phase quantification, physics simulations or morphological characterization. The wide range of length scales, imaging techniques and materials studied in materials science means any segmentation algorithm must generalise to unseen data and support abstract, user-defined semantic classes. Trainable segmentation is a popular interactive segmentation paradigm where a classifier is trained to map from image features to user drawn labels. SAMBA is a trainable segmentation tool that uses Meta's Segment Anything Model (SAM) for fast, high-quality label suggestions and a random forest classifier for robust, generalizable segmentations. It is accessible in the browser (https://www.sambasegment.com/) without the need to download any external dependencies. The segmentation backend is run in the cloud, so does not require the user to have powerful hardware

    HRTF upsampling with a generative adversarial network using a gnomonic equiangular projection

    Full text link
    An individualised head-related transfer function (HRTF) is essential for creating realistic virtual reality (VR) and augmented reality (AR) environments. However, acoustically measuring high-quality HRTFs requires expensive equipment and an acoustic lab setting. To overcome these limitations and to make this measurement more efficient HRTF upsampling has been exploited in the past where a high-resolution HRTF is created from a low-resolution one. This paper demonstrates how generative adversarial networks (GANs) can be applied to HRTF upsampling. We propose a novel approach that transforms the HRTF data for convenient use with a convolutional super-resolution generative adversarial network (SRGAN). This new approach is benchmarked against two baselines: barycentric upsampling and a HRTF selection approach. Experimental results show that the proposed method outperforms both baselines in terms of log-spectral distortion (LSD) and localisation performance using perceptual models when the input HRTF is sparse.Comment: 13 pages, 9 figures, Preprint (Submitted to Transactions on Audio, Speech and Language Processing on the 24 Feb 2023
    corecore