155 research outputs found

    Measurement and analysis of chemically changed mineral fibers after experiments in vitro and in vivo.

    Get PDF
    Asbestos, as well as other natural and man-made mineral fibers used for in vitro and in vivo experiments, must be described and defined physically and chemically as exactly as possible before any application. The interactions of fibers with the physical, chemical (air, water, etc.) and biological (cells, tissues, etc.) environments cause important changes in fiber chemistry and crystalline structure. Also, these should be detected as precisely as possible after each experiment. Our recent investigations dealt with the development of a complex analytical system for such measurements and with some applications of these analytical procedures for fibrous material sampled in the environment and from biological materials. Chemical and physical microanalyses of asbestos and glass fibers obtained by environmental sampling (air, water) and from human and animal tissue have shown chemical and crystalline changes in these particles. Scanning electron microscopy, electron microprobe analysis and mass spectrometry analysis were used in these investigations. A partial or total leakage of elements could be observed. The leakage of elements in fibers is of a statistical nature. Some fibers remained chemically unchanged; in some fibers some elements were partially leached; and in some fibers the majority of metallic elements were leached. The potential meaning of this effect is also discussed

    OT 060420: A Seemingly Optical Transient Recorded by All-Sky Cameras

    Get PDF
    We report on a ~5th magnitude flash detected for approximately 10 minutes by two CONCAM all-sky cameras located in Cerro Pachon - Chile and La Palma - Spain. A third all-sky camera, located in Cerro Paranal - Chile did not detect the flash, and therefore the authors of this paper suggest that the flash was a series of cosmic-ray hits, meteors, or satellite glints. Another proposed hypothesis is that the flash was an astronomical transient with variable luminosity. In this paper we discuss bright optical transient detection using fish-eye all-sky monitors, analyze the apparently false-positive optical transient, and propose possible causes to false optical transient detection in all-sky cameras.Comment: 7 figures, 3 tables, accepted PAS

    Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog

    Full text link
    A catalog of 824 fireballs (bright meteors), observed by a dedicated network of all-sky digital photographic cameras in central Europe in the years 2017-2018 is presented. The status of the European Fireball Network, established in 1963, is described. The cameras collect digital images of meteors brighter than an absolute magnitude of about -2 and radiometric light curves with a high temporal resolution of those brighter than a magnitude ~ -4. All meteoroids larger than 5 grams, corresponding to sizes of about 2 cm, are detected regardless of their entry velocity. High-velocity meteoroids are detected down to masses of about 0.1 gram. The largest observed meteoroid in the reported period 2017-2018 had a mass of about 100 kg and a size of about 40 cm. The methods of data analysis are explained and all catalog entries are described in detail. The provided data include the fireball date and time, atmospheric trajectory and velocity, the radiant in various coordinate systems, heliocentric orbital elements, maximum brightness, radiated energy, initial and terminal masses, maximum encountered dynamic pressure, physical classification, and possible shower membership. Basic information on the fireball spectrum is available for some bright fireballs (apparent magnitude < -7). A simple statistical evaluation of the whole sample is provided. The scientific analysis is presented in an accompanying paper.Comment: accepted in Astronomy and Astrophysic

    Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC)

    Get PDF
    Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABAA/C receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the β7–β10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels

    Ataxin-3 Plays a Role in Mouse Myogenic Differentiation through Regulation of Integrin Subunit Levels

    Get PDF
    BACKGROUND: During myogenesis several transcription factors and regulators of protein synthesis and assembly are rapidly degraded by the ubiquitin-proteasome system (UPS). Given the potential role of the deubiquitinating enzyme (DUB) ataxin-3 in the UPS, and the high expression of the murine ataxin-3 homolog in muscle during embryogenesis, we sought to define its role in muscle differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence analysis, we found murine ataxin-3 (mATX3) to be highly expressed in the differentiated myotome of E9.5 mouse embryos. C2C12 myoblasts depleted of mATX3 by RNA interference exhibited a round morphology, cell misalignment, and a delay in differentiation following myogenesis induction. Interestingly, these cells showed a down-regulation of alpha5 and alpha7 integrin subunit levels both by immunoblotting and immunofluorescence. Mouse ATX3 was found to interact with alpha5 integrin subunit and to stabilize this protein by repressing its degradation through the UPS. Proteomic analysis of mATX3-depleted C2C12 cells revealed alteration of the levels of several proteins related to integrin signaling. CONCLUSIONS: Ataxin-3 is important for myogenesis through regulation of integrin subunit levels.This work was financed by the Fundacao para a Ciencia e a Tecnologia (FCT) (POCI/SAU-MMO/60412/2002) and by National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grant RO1 NS038712 to HLP. MCC, FB, AJR, and RJT were supported by the FCT fellowships (SFRH/BD/9759/2003 and SFRH/BPD/28560/2006), (SFRH/BPD/17368/2004), (SFRH/BD/17066/2004), (SFRH/BD/29947/2006), respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Comparison of Synchrotron X-Ray Microanalysis With Electron and Proton Microscopy for Individual Particle Analysis

    Full text link
    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE
    corecore