91 research outputs found

    Measurement and analysis of chemically changed mineral fibers after experiments in vitro and in vivo.

    Get PDF
    Asbestos, as well as other natural and man-made mineral fibers used for in vitro and in vivo experiments, must be described and defined physically and chemically as exactly as possible before any application. The interactions of fibers with the physical, chemical (air, water, etc.) and biological (cells, tissues, etc.) environments cause important changes in fiber chemistry and crystalline structure. Also, these should be detected as precisely as possible after each experiment. Our recent investigations dealt with the development of a complex analytical system for such measurements and with some applications of these analytical procedures for fibrous material sampled in the environment and from biological materials. Chemical and physical microanalyses of asbestos and glass fibers obtained by environmental sampling (air, water) and from human and animal tissue have shown chemical and crystalline changes in these particles. Scanning electron microscopy, electron microprobe analysis and mass spectrometry analysis were used in these investigations. A partial or total leakage of elements could be observed. The leakage of elements in fibers is of a statistical nature. Some fibers remained chemically unchanged; in some fibers some elements were partially leached; and in some fibers the majority of metallic elements were leached. The potential meaning of this effect is also discussed

    Comparison of Synchrotron X-Ray Microanalysis With Electron and Proton Microscopy for Individual Particle Analysis

    Get PDF
    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE

    Ataxin-3 Plays a Role in Mouse Myogenic Differentiation through Regulation of Integrin Subunit Levels

    Get PDF
    BACKGROUND: During myogenesis several transcription factors and regulators of protein synthesis and assembly are rapidly degraded by the ubiquitin-proteasome system (UPS). Given the potential role of the deubiquitinating enzyme (DUB) ataxin-3 in the UPS, and the high expression of the murine ataxin-3 homolog in muscle during embryogenesis, we sought to define its role in muscle differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence analysis, we found murine ataxin-3 (mATX3) to be highly expressed in the differentiated myotome of E9.5 mouse embryos. C2C12 myoblasts depleted of mATX3 by RNA interference exhibited a round morphology, cell misalignment, and a delay in differentiation following myogenesis induction. Interestingly, these cells showed a down-regulation of alpha5 and alpha7 integrin subunit levels both by immunoblotting and immunofluorescence. Mouse ATX3 was found to interact with alpha5 integrin subunit and to stabilize this protein by repressing its degradation through the UPS. Proteomic analysis of mATX3-depleted C2C12 cells revealed alteration of the levels of several proteins related to integrin signaling. CONCLUSIONS: Ataxin-3 is important for myogenesis through regulation of integrin subunit levels.This work was financed by the Fundacao para a Ciencia e a Tecnologia (FCT) (POCI/SAU-MMO/60412/2002) and by National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grant RO1 NS038712 to HLP. MCC, FB, AJR, and RJT were supported by the FCT fellowships (SFRH/BD/9759/2003 and SFRH/BPD/28560/2006), (SFRH/BPD/17368/2004), (SFRH/BD/17066/2004), (SFRH/BD/29947/2006), respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Etude d’un dosimètre individuel passif multi-élément pour la dosimétrie des neutrons

    No full text
    La dosimétrie individuelle des neutrons est actuellement effectuée à partir de méthodes peu satisfaisantes, soit par l’utilisation d’émulsions nucléaires qui sont “aveugles” pour les énergies inférieures à 1.5 MeV, soit par la mise en œuvre de détecteurs à albédo qui doivent être étalonnés aux divers postes de travail car leur réponse varie considérablement en fonction de l’énergie des neutrons. Les auteurs présentent l’état actuel des études du projet DINEM, Dosimètre Individuel “Neutrons” à Eléments Multiples. Il est constitué d’un dosimètre à albédo “PGP-DIN” qui détecte les neutrons d’énergie inférieure à 7 keV et d’un détecteur solide de traces qui détecte les énergies supérieures à 100 keV. Les derniers progrès enregistrés sur l’utilisation du CN 85 comme détecteur solide de traces laissent entrevoir une solution prochaine au problème difficile de la dosimétrie individuelle
    corecore