3 research outputs found

    High-statistics measurement of Collins and Sivers asymmetries for transversely polarised deuterons

    Full text link
    New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarised 6^6LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 \gevv\ muon beam at CERN, balancing the existing data on transversely polarised proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the uu and dd quark, as well as the tensor charge in the measured xx-range are extracted. In particular, the accuracy of the dd quark results is significantly improved

    Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of ρ0 mesons

    No full text
    The production of vector mesons in deep inelastic scattering is an interesting yet scarcely explored channel to study the transverse spin structure of the nucleon and the spin-dependence of fragmentation. The COMPASS collaboration has performed the first measurement of the Collins and Sivers asymmetries for inclusively produced mesons. The analysis is based on the data set collected in deep inelastic scattering in 2010 using a beam impinging on a transversely polarized target. The mesons are selected from oppositely charged hadron pairs, and the asymmetries are extracted as a function of the Bjorken-x variable, the transverse momentum of the pair and the fraction of the energy z carried by the pair. Indications for positive Collins and Sivers asymmetries are observed

    Exotic meson π1 (1600) with JPC=1-+ and its decay into ρ (770)π

    No full text
    We study the spin-exotic JPC=1-+ amplitude in single-diffractive dissociation of 190 GeV/c pions into π-π-π+ using a hydrogen target and confirm the π1(1600)→ρ(770)π amplitude, which interferes with a nonresonant 1-+ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile these experimental findings. We study the nonresonant contributions to the π-π-π+ final state using pseudodata generated on the basis of a Deck model. Subjecting pseudodata and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the JPC=1-+ amplitude and also for amplitudes with other JPC quantum numbers. We investigate for the first time the amplitude of the π-π+ subsystem with JPC=1 - in the 3π amplitude with JPC=1-+ employing the novel freed-isobar analysis scheme. We reveal this π-π+ amplitude to be dominated by the ρ(770) for both the π1(1600) and the nonresonant contribution. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the JPC=1-+ amplitude
    corecore