49 research outputs found

    Dichloro-[1-(hydroxyphenyl)-2-phenylethylenediamine]platinum(II) complexes: testing on the human ovarian cancer cell lines NIH: OVCAR3 and SK OV 3

    Get PDF
    The diastereoisomeric dichloro-[1-(2-, 3- and 4-hydroxyphenyl)-2-phenylethylenediamine]platinum(II) complexes were tested on two human ovarian cancer cell lines NIH: OVCAR-3 and SK-OV-3, both resistant against cisplatin. Dichloro-[threo-1-(3-hydroxyphenyl)-2-phenylethylenediamine]platinum(II) (threo-5-PtCl2) proved to be the most active representative of the new series, producing cytocidal effects at a concentration range of 2.5 to 5.0 microM on the NIH: OVCAR-3 cell line. On the more resistant SK-OV-3 cell line, threo-5-PtCl2 was only moderately active, while in combination with BSO, a GSH level lowering compound, threo-5-PtCl2 showed a strong synergistic effect

    Development of a Neurotensin-Derived 68Ga-Labeled PET Ligand with High In Vivo Stability for Imaging of NTS1 Receptor-Expressing Tumors

    Get PDF
    Overexpression of the neurotensin receptor type 1 (NTS1R), a peptide receptor located at the plasma membrane, has been reported for a variety of malignant tumors. Thus, targeting the NTS1R with 18F- or 68Ga-labeled ligands is considered a straightforward approach towards in vivo imaging of NTS1R-expressing tumors via positron emission tomography (PET). The development of suitable peptidic NTS1R PET ligands derived from neurotensin is challenging due to proteolytic degradation. In this study, we prepared a series of NTS1R PET ligands based on the C-terminal fragment of neurotensin (NT(8–13), Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) by attachment of the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via an Nω-carbamoylated arginine side chain. Insertion of Ga3+ in the DOTA chelator gave potential PET ligands that were evaluated concerning NTS1R affinity (range of Ki values: 1.2–21 nM) and plasma stability. Four candidates were labeled with 68Ga3+ and used for biodistribution studies in HT-29 tumor-bearing mice. [68Ga]UR-LS130 ([68Ga]56), containing an N-terminal methyl group and a β,β-dimethylated tyrosine instead of Tyr11, showed the highest in vivo stability and afforded a tumor-to-muscle ratio of 16 at 45 min p.i. Likewise, dynamic PET scans enabled a clear tumor visualization. The accumulation of [68Ga]56 in the tumor was NTS1R-mediated, as proven by blocking studies

    Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma

    Get PDF
    High malignancy and early metastasis are hallmarks of melanoma. Here, we report that the transcription factor Snail1 inhibits expression of the tumor suppressor CYLD in melanoma. As a direct consequence of CYLD repression, the protooncogene BCL-3 translocates into the nucleus and activates Cyclin D1 and N-cadherin promoters, resulting in proliferation and invasion of melanoma cells. Rescue of CYLD expression in melanoma cells reduced proliferation and invasion in vitro and tumor growth and metastasis in vivo. Analysis of a tissue microarray with primary melanomas from patients revealed an inverse correlation of Snail1 induction and loss of CYLD expression. Importantly, tumor thickness and progression-free and overall survival inversely correlated with CYLD expression. Our data suggest that Snail1-mediated suppression of CYLD plays a key role in melanoma malignancy

    Targeting Melanoma Metastasis and Immunosuppression with a New Mode of Melanoma Inhibitory Activity (MIA) Protein Inhibition

    Get PDF
    Melanoma is the most aggressive form of skin cancer, with fast progression and early dissemination mediated by the melanoma inhibitory activity (MIA) protein. Here, we discovered that dimerization of MIA is required for functional activity through mutagenesis of MIA which showed the correlation between dimerization and functional activity. We subsequently identified the dodecapeptide AR71, which prevents MIA dimerization and thereby acts as a MIA inhibitor. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy demonstrated the binding of AR71 to the MIA dimerization domain, in agreement with in vitro and in vivo data revealing reduced cell migration, reduced formation of metastases and increased immune response after AR71 treatment. We believe AR71 is a lead structure for MIA inhibitors. More generally, inhibiting MIA dimerization is a novel therapeutic concept in melanoma therapy

    Standardized kinetic microassay to quantify differential chemosensitivity on the basis of proliferative activity

    Get PDF
    Conventionally in vitro cytotoxicity assays are performed as single-end-point determinations. To compensate for the diversity of growth rates among different cell lines in this report we describe a computerized kinetic chemosensitivity assay based on quantification of biomass by staining cells with crystal violet. As a prerequisite four human breast cancer cell lines (MDA-MB-231, MCF-7, T-47-D and ZR-75-1) were characterized with regard to oestrogen and progesterone receptor content, modal chromosome number and proliferation kinetics depending on the number of passages in culture. With prolonged time in culture for ZR-75-1 exposed to various concentrations of cisplatinum a dose-related increase in drug effect was observed. Owing to a correction of the T/C values for the initial cell mass (at the time when drug is added) a sharp distinction between cytostatic and cytocidal drug effects becomes obvious in plots of corrected T/C values versus time of incubation. The influence of the untreated control on the corrected T/C values and possible time courses of theoretical inhibition profiles (reflecting cytostatic, transient cytotoxic or cytocidal drug effects as well as development of resistance) and their relationship to the corresponding growth curves of drug-treated cells are discussed. Chemosensitivity assays with diethylstilbestrol dipropionate, tamoxifen, melphalan, cisplatinum, vinblastine, Adriamycin and 5-fluorouracil prove the theoretical considerations to be true for MDA-MB-231, MCF-7, T-47-D and ZR-75-1 human breast cancer cell lines in practice

    Chemosensitivity of malignant melanoma models: long-term complete remission after regional hyaluronidase/vinblastine therapy

    No full text
    Peritumoral s.c. injection of hyaluronidase (100,000 IU/kg), followed 4 later by s.c. injection of vinblastine (0.3 mg/kg, a dose which by itself had no antitumor activity), was given to nude mice bearing various human malignant melanomas. Seven such treatments (1/wk) were performed from day 22 to day 64. On day 78, histol. examns. revealed complete cure (absence of tumor cells). At the dose given, hyaluronidase alone did not affect tumor growth, but it potentiated the action of vinblastine, allowing the use of a dose of the latter which does not produce therapy-limiting adverse effects.

    Establishment and characterization of a human papillary thyroid carcinoma cell line with oxyphilic differentiation (ONCO-DG 1)

    Get PDF
    In the present study the establishment and characterization of a new oxyphilic papillary thyroid carcinoma cell line--ONCO-DG1- is given. With immunohistological, histochemical and flow cytometric methods, ONCO-DG 1 cells revealed features of epithelial differentiation. Furthermore the cells formed von Kossa-positive deposits resembling psammoma bodies in monolayer and spheroid culture until late passages. The tumor cell line is now in the 40th subculture. Because of the ability to form multicellular tumor spheroids (MCTS), this cell line is a good model for examining the interaction between thyroid tumor cells and confluent human endothelial cells on extracellular matrix in vitro. It is also suitable for xenotransplantation studies, because it is tumorigenic in NMRI nude mice in vivo
    corecore