22 research outputs found

    Nernst-Planck Based Description of Transport, Coulombic Interactions and Geochemical Reactions in Porous Media: Modeling Approach and Benchmark Experiments

    Get PDF
    Transport of multicomponent electrolyte solutions in saturated porous media is affected by the electrostatic interactions between charged species. Such Coulombic interactions couple the displacement of the different ions in the pore water and remarkably impact mass transfer not only under diffusion, but also under advection-dominated flow regimes. To accurately describe charge effects in flow-through systems, we propose a multidimensional modeling approach based on the Nernst-Planck formulation of diffusive/dispersive fluxes. The approach is implemented with a COMSOL-PhreeqcRM coupling allowing us to solve multicomponent ionic conservative and reactive transport problems, in domains with different dimensionality (1-D, 2-D, and 3-D), and in homogeneous and heterogeneous media. The Nernst-Planck-based coupling has been benchmarked with analytical solutions, numerical simulations with another code, and high-resolution experimental data sets. The latter include flow-through experiments that have been carried out in this study to explore the effects of electrostatic interactions in fully three-dimensional setups. The results of the simulations show excellent agreement for all the benchmarks problems, which were selected to illustrate the capabilities and the distinct features of the Nernst-Planck-based reactive transport code. The outcomes of this study illustrate the importance of Coulombic interactions during conservative and reactive transport of charged species in porous media and allow the quantification and visualization of the specific contributions to the diffusive/dispersive Nernst-Planck fluxes, including the Fickian component, the term arising from the activity coefficient gradients, and the contribution due to electromigration

    Electrokinetic Delivery of Reactants: Pore Water Chemistry Controls Transport, Mixing, and Degradation

    Get PDF
    Electrokinetics in porous media entails complex transport processes occurring upon the establishment of electric potential gradients, with a wide spectrum of environmental applications ranging from remediation of contaminated sites to biotechnology. The resulting electric forces cause the movement of pore water ions in opposite directions, leading to charge interactions that can affect the distribution of charged species in the domain. Here, we demonstrate that changes in chemical conditions, such as the concentration of a background electrolyte in the pore water of a saturated porous medium, exert a key control on the macroscopic transport of charged tracers and reactants. The difference in concentration between the background electrolyte and an injected solute can limit or enhance the reactant delivery, cause nonintuitive patterns of concentration distribution, and ultimately control mixing and degradation kinetics. With nonreactive and reactive electrokinetic transport experiments combined with process-based modeling, we show that microscopic charge interactions in the pore water play a crucial role on the transport of injected plumes and on the mechanisms and rate of both physical and chemical processes at larger, macroscopic scales. Our results have important implications on electrokinetic transport in porous media and may greatly impact injection and delivery strategies in a wide range of applications, including in situ remediation of soil and groundwater
    corecore