148 research outputs found
AHRQ series on complex intervention systematic reviews – paper 2: defining complexity, formulating scope, and questions
The early stages of a systematic review set the scope and expectations. This can be particularly challenging for complex interventions given their multidimensional and dynamic nature.
This paper builds on concepts introduced in paper 1 of this series. It describes the methodological, practical, and philosophical challenges and potential approaches for formulating the questions and scope of systematic reviews of complex interventions. Furthermore, it discusses the use of theory to help organize reviews of complex interventions.
Many interventions in medicine, public health, education, social services, behavioral health, and community programs are complex, and they may not fit neatly within the established paradigm for reviews of straightforward interventions. This paper provides conceptual and operational guidance for these early stages of scope formulation to assist authors of systematic reviews of complex interventions.This project was funded under Contract No. HHSA290201200004C from the Agency for Healthcare Research and Quality (AHRQ) , U.S. Department of Health and Human Services
Biomanufacturing and testbed development for the continuous production of monoclonal antibodies
Please click Additional Files below to see the full abstract
Does information from ClinicalTrials.gov increase transparency and reduce bias? Results from a five-report case series
Background We investigated whether information in ClinicalTrials.gov would impact the conclusions of five ongoing systematic reviews. Method We considered five reviews that included 495 studies total. Each review team conducted a search of ClinicalTrials.gov up to the date of the review’s last literature search, screened the records using the review’s eligibility criteria, extracted information, and assessed risk of bias and applicability. Each team then evaluated the impact of the evidence found in ClinicalTrials.gov on the conclusions in the review. Results Across the five reviews, the number of studies that had both a registry record and a publication varied widely, from none in one review to 43% of all studies identified in another. Among the studies with both a record and publication, there was also wide variability in the match between published outcomes and those listed in ClinicalTrials.gov. Of the 173 total ClinicalTrials.gov records identified across the five projects, between 11 and 43% did not have an associated publication. In the 14% of records that contained results, the new data provided in the ClinicalTrials.gov records did not change the results or conclusions of the reviews. Finally, a large number of published studies were not registered in ClinicalTrials.gov, but many of these were published before ClinicalTrials.gov’s inception date of 2000. Conclusion Improved prospective registration of trials and consistent reporting of results in ClinicalTrials.gov would help make ClinicalTrials.gov records more useful in finding unpublished information and identifying potential biases. In addition, consistent indexing in databases, such as MEDLINE, would allow for better matching of records and publications, leading to increased utility of these searches for systematic review projects
Adverse childhood experiences and prescription drug use in a cohort study of adult HMO patients
<p>Abstract</p> <p>Background</p> <p>Prescription drugs account for approximately 11% of national health expenditures. Prior research on adverse childhood experiences (ACEs), which include common forms of child maltreatment and related traumatic stressors, has linked them to numerous health problems. However, data about the relationship of these experiences to prescription drug use are scarce.</p> <p>Method</p> <p>We used the ACE Score (an integer count of 8 different categories of ACEs) as a measure of cumulative exposure to traumatic stress during childhood. We prospectively assessed the relationship of the Score to prescription drug use in a cohort of 15,033 adult HMO patients (mean follow-up: 6.1 years) and assessed mediation of this relationship by documented ACE-related health and social problems.</p> <p>Results</p> <p>Nearly 1.2 million prescriptions were recorded; prescriptions rates increased in a graded fashion as the ACE Score increased (p for trend < 0.0001). Compared to persons with an ACE Score of 0, persons with a Score ≥ 5 had rates increased by 40%; graded relationships were seen for all age groups (18–44, 45–64, and 65–89 years) (p for trend < 0.01). Graded relationships were observed for the risk of being in the upper decile of number of classes of drugs used; persons with scores of ≥ 5 had this risk increased 2-fold. Adjustment for ACE-related health problems reduced the strength of the associations by more than 60%.</p> <p>Conclusion</p> <p>ACEs substantially increase the number of prescriptions and classes of drugs used for as long as 7 or 8 decades after their occurrence. The increases in prescription drug use were largely mediated by documented ACE-related health and social problems.</p
Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization
Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove
Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin
<p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p
Development and Application of a Data-Driven Signal Detection Method for Surveillance of Adverse Event Variability Across Manufacturing Lots of Biologics
Abstract
Introduction
Postmarketing drug safety surveillance research has focused on the product-patient interaction as the primary source of variability in clinical outcomes. However, the inherent complexity of pharmaceutical manufacturing and distribution, especially of biologic drugs, also underscores the importance of risks related to variability in manufacturing and supply chain conditions that could potentially impact clinical outcomes. We propose a data-driven signal detection method called HMMScan to monitor for manufacturing lot-dependent changes in adverse event (AE) rates, and herein apply it to a biologic drug.
Methods
The HMMScan method chooses the best-fitting candidate from a family of probabilistic Hidden Markov Models to detect temporal correlations in per lot AE rates that could signal clinically relevant variability in manufacturing and supply chain conditions. Additionally, HMMScan indicates the particular lots most likely to be related to risky states of the manufacturing or supply chain condition. The HMMScan method was validated on extensive simulated data and applied to three actual lot sequences of a major biologic drug by combining lot metadata from the manufacturer with AE reports from the US FDA Adverse Event Reporting System (FAERS).
Results
Extensive method validation on simulated data indicated that HMMScan is able to correctly detect the presence or absence of variable manufacturing and supply chain conditions for contiguous sequences of 100 lots or more when changes in these conditions have a meaningful impact on AE rates. Applying the HMMScan method to FAERS data, two of the three actual lot sequences examined exhibited evidence of potential manufacturing or supply chain-related variability.
Conclusions
HMMScan could be utilized by both manufacturers and regulators to automate lot variability monitoring and inform targeted root-cause analysis. Broad application of HMMScan would rely on a well-developed data input pipeline. The proposed method is implemented in an open-source GitHub repository
Cyberbiosecurity in Advanced Manufacturing Models
Cybersecurity for the production of safe and effective biopharmaceuticals requires the attention of multiple stakeholders, including industry, governments, and healthcare providers. Cyberbiosecurity breaches could directly impact patients, from compromised data privacy to disruptions in production that jeopardize global pandemic response. Maintaining cybersecurity in the modern economy, where advanced manufacturing technologies and digital strategies are becoming the norm, is a significant challenge. Here, we highlight vulnerabilities in present and future biomanufacturing paradigms given the dependence of this industry sector on proprietary intellectual property, cyber-physical systems, and government-regulated production environments, as well as movement toward advanced manufacturing models. Specifically, we (1) present an analysis of digital information flow in a typical biopharmaceutical manufacturing value chain; (2) consider the potential cyberbiosecurity risks that might emerge from advanced manufacturing models such as continuous and distributed systems; and (3) provide recommendations for risk mitigation. While advanced manufacturing models hold the potential for reducing costs and increasing access to more personalized therapies, the evolving landscape of the biopharmaceutical enterprise has led to growing concerns over potential cyber attacks. Gaining better foresight on potential risks is key for implementing proactive defensive principles, framing new developments, and establishing a permanent security culture that adapts to new challenges while maintaining the transparency required for regulated production of safe and effective medicines
- …