18 research outputs found

    Resting EEG Microstates and Autonomic Heart Rate Variability Do Not Return to Baseline One Hour After a Submaximal Exercise.

    Get PDF
    Recent findings suggest that an acute physical exercise modulates the temporal features of the EEG resting microstates, especially the microstate map C duration and relative time coverage. Microstate map C has been associated with the salience resting state network, which is mainly structured around the insula and cingulate, two brain nodes that mediate cardiovascular arousal and interoceptive awareness. Heart rate variability (HRV) is dependent on the autonomic balance; specifically, an increase in the sympathetic (or decrease in the parasympathetic) tone will decrease variability while a decrease in the sympathetic (or increase in the parasympathetic) tone will increase variability. Relying on the functional interaction between the autonomic cardiovascular activity and the salience network, this study aims to investigate the effect of exercise on the resting microstate and the possible interplay with this autonomic cardiovascular recovery after a single bout of endurance exercise. Thirty-eight young adults performed a 25-min constant-load cycling exercise at an intensity that was subjectively perceived as "hard." The microstate temporal features and conventional time and frequency domain HRV parameters were obtained at rest for 5 min before exercise and at 5, 15, 30, 45, and 60 min after exercise. Compared to the baseline, all HRV parameters were changed 5 min after exercise cessation. The mean durations of microstate B and C, and the frequency of occurrence of microstate D were also changed immediately after exercise. A long-lasting effect was found for almost all HRV parameters and for the duration of microstate C during the hour following exercise, indicating an uncompleted recovery of the autonomic cardiovascular system and the resting microstate. The implication of an exercise-induced afferent neural traffic is discussed as a potential modulator of both the autonomic regulation of heart rate and the resting EEG microstate

    Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    Get PDF
    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction

    A single-bout of Endurance Exercise Modulates EEG Microstates Temporal Features.

    No full text
    Electrical neuroimaging is a promising method to explore the spontaneous brain function after physical exercise. The present study aims to investigate the effect of acute physical exercise on the temporal dynamic of the resting brain activity captured by the four conventional map topographies (microstates) described in the literature, and to associate these brain changes with the post-exercise neuromuscular function. Twenty endurance-trained subjects performed a 30-min biking task at 60% of their maximal aerobic power followed by a 10 km all-out time trial. Before and after each exercise, knee-extensor neuromuscular function and resting EEG were collected. Both exercises resulted in a similar increase in microstate class C stability and duration, as well as an increase in transition probability of moving toward microstate class C. After the first exercise, the increase in class C global explained variance was correlated with the indice of muscle alterations (100 Hz paired stimuli). After the second exercise, the increase in class C mean duration was correlated with the 100 Hz paired stimuli, but also with the reduction in maximal voluntary force. Interestingly, microstate class C has been associated with the salience resting-state network, which participates in integrating multisensory modalities. We speculate that temporal reorganization of the brain state after exercise could be partially modulated by the muscle afferents that project into the salience resting-state network, and indirectly participates in modulating the motor behavior

    Acid deposition in the United Kingdom

    No full text
    Report prepared by United Kingdom Review Group on Acid RainSIGLEAvailable from British Library Document Supply Centre- DSC:GPB-7523 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore