48 research outputs found

    Non-Invasive Mapping of the Gastrointestinal Microbiota Identifies Children with Inflammatory Bowel Disease

    Get PDF
    Background: Pediatric inflammatory bowel disease (IBD) is challenging to diagnose because of the non-specificity of symptoms; an unequivocal diagnosis can only be made using colonoscopy, which clinicians are reluctant to recommend for children. Diagnosis of pediatric IBD is therefore frequently delayed, leading to inappropriate treatment plans and poor outcomes. We investigated the use of 16S rRNA sequencing of fecal samples and new analytical methods to assess differences in the microbiota of children with IBD and other gastrointestinal disorders. Methodology/Principal Findings: We applied synthetic learning in microbial ecology (SLiME) analysis to 16S sequencing data obtained from i) published surveys of microbiota diversity in IBD and ii) fecal samples from 91 children and young adults who were treated in the gastroenterology program of Children’s Hospital (Boston, USA). The developed method accurately distinguished control samples from those of patients with IBD; the area under the receiver-operating-characteristic curve (AUC) value was 0.83 (corresponding to 80.3% sensitivity and 69.7% specificity at a set threshold). The accuracy was maintained among data sets collected by different sampling and sequencing methods. The method identified taxa associated with disease states and distinguished patients with Crohn’s disease from those with ulcerative colitis with reasonable accuracy. The findings were validated using samples from an additional group of 68 patients; the validation test identified patients with IBD with an AUC value of 0.84 (e.g. 92% sensitivity, 58.5% specificity). Conclusions/Significance: Microbiome-based diagnostics can distinguish pediatric patients with IBD from patients with similar symptoms. Although this test can not replace endoscopy and histological examination as diagnostic tools, classification based on microbial diversity is an effective complementary technique for IBD detection in pediatric patients.Natural Sciences and Engineering Research Council of Canada (Award NSERC PGS D)National Institutes of Health (U.S.) (1-R21-A1084032-01A1

    Evaluation of 15 Functional Candidate Genes for Association with Chronic Otitis Media with Effusion and/or Recurrent Otitis Media (COME/ROM)

    Get PDF
    DNA sequence variants in genes involved in the innate immune response and secondary response to infection may confer susceptibility to chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). We evaluated single nucleotide polymorphisms (SNPs) in 15 functional candidate genes. A total of 99 SNPs were successfully genotyped on the Sequenom platform in 142 families (618 subjects) from the Minnesota COME/ROM Family Study. Data were analyzed for association with COME/ROM using the Generalized Disequilibrium Test (GDT). Sex and age at exam were adjusted as covariates, relatedness was accounted for, and genotype differences from all phenotypically discordant relative pairs were utilized to measure the evidence of association between COME/ROM and each SNP. SNP rs2735733 in the region of the mucin 5, subtypes A/C gene (MUC5AC) exhibited nominal evidence for association with COME/ROM (P = 0.002). Two additional SNPs from this region had P values<0.05. Other variants exhibiting associations with COME/ROM at P<0.05 included the SCN1B SNP rs8100085 (P = 0.013), SFTPD SNP rs1051246 (P = 0.039) and TLR4 SNP rs2770146 (P = 0.038). However, none of these associations replicated in an independent sample of COME/ROM families. The candidate gene variants examined do not appear to make a major contribution to COME/ROM susceptibility, despite a priori evidence from functional or animal model studies for a role in COME/ROM pathology

    Molecular and functional diversity of neural connexins in the retina

    No full text
    Electrical synapses (gap junctions) in neuronal circuits have become a major focus in the study of network properties such as synchronization and oscillation (Galarreta and Hestrin, 1999; Gibson et al., 1999). Despite the recent progress made in unraveling the contribution of gap junctions to network behavior, little is known about the molecular composition of the junctional constituents. By cloning gap junction proteins [connexins (Cxs)] from zebrafish retina and through functional expression, we demonstrate that the retina possesses a high degree of connexin diversity, which may account for differential functional properties of electrical synapses. Three new Cxs, designated as zebrafish Cx27.5 (zfCx27.5), zfCx44.1, and zfCx55.5, and the carp ortholog of mammalian Cx43 were cloned. By in situ hybridization and in situ RT-PCR, we demonstrate that the four fish connexin mRNAs show differential localization in the retina. Transient functional expression in paired Xenopus oocytes and in the neuroblastoma N2A cell line indicate an extreme range of electrophysiological properties of these connexins in terms of voltage dependence and unitary conductance. For instance, the new zfCx44.1 exhibited high sensitivity to voltage-induced closure with currents decaying rapidly for transjunctional potentials >10 mV, whereas zfCx55.5 channels showed an opposite voltage dependence in response to voltage steps of either polarity. Moreover, although zfCx44.1 channels showed unitary conductance as high as any previously reported for junctional channels (nearly 300 pS), zfCx55.5 and zfCx27.5 exhibited much lower unitary conductances (<60 pS).link_to_subscribed_fulltex

    Permeability and Regulation of Gap Junction Channels in Cells and in Artificial Lipid Bilayers

    No full text
    corecore