11 research outputs found
Simulations of energetic beam deposition: from picoseconds to seconds
We present a new method for simulating crystal growth by energetic beam
deposition. The method combines a Kinetic Monte-Carlo simulation for the
thermal surface diffusion with a small scale molecular dynamics simulation of
every single deposition event. We have implemented the method using the
effective medium theory as a model potential for the atomic interactions, and
present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to
35 eV. The method is capable of following the growth of several monolayers at
realistic growth rates of 1 monolayer per second, correctly accounting for both
energy-induced atomic mobility and thermal surface diffusion. We find that the
energy influences island and step densities and can induce layer-by-layer
growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag),
which correlates with where the net impact-induced downward interlayer
transport is at a maximum. A high step density is needed for energy induced
layer-by-layer growth, hence the effect dies away at increased temperatures,
where thermal surface diffusion reduces the step density. As part of the
development of the method, we present molecular dynamics simulations of single
atom-surface collisions on flat parts of the surface and near straight steps,
we identify microscopic mechanisms by which the energy influences the growth,
and we discuss the nature of the energy-induced atomic mobility