100 research outputs found

    Effets des radiations ionisantes sur des complexes ADN-protéine

    No full text
    La destruction radio-induite des complexes ADN-protéine peut avoir des conséquences graves pour des systèmes impliqués dans des fonctions cellulaires importantes. Le premier système qui a été étudié est un système de régulation de l'expression génique chez Escherichia coli, celui de l'opéron lactose. Le complexe répresseur-opérateur est détruit après l'irradiation du complexe ou de la protéine seule. L'endommagement du domaine de fixation du répresseur à l'ADN (appelé headpiece) a été démontré et étudié tant du point de vue de l'intégrité de la chaîne peptidique que de la conformation et des modifications de certains acides aminés. Dans un deuxième temps, des dysfonctionnements de l'induction d'un complexe répresseur irradié-opérateur non irradié ont été mises en évidence. Ces perturbations, dues à une diminution du nombre de sites de fixation sur le répresseur, sont corrélées à l'endommagement de résidus tryptophane. D'autre part, l'inducteur protège le répresseur lorsque ces deux partenaires sont irradiés ensemble, d'une part par capture (scavenging) des radicaux en solution et d'autre part par le masquage de son site de fixation sur la protéine. Le deuxième système étudié est formé par Fpg (ou Formamidopyrimidine glycosylase), protéine de réparation de l'ADN, et par de l'ADN porteur d'une lésion oxidative. Les résultats obtenus montrent que l'irradiation de la protéine perturbe la réparation à la fois en diminuant son efficacité de reconnaissance et de fixation des lésions, et en modifiant son activité enzymatique.ORLEANS-BU Sciences (452342104) / SudocSudocFranceF

    Predicting radiation damage distribution in biomolecules

    No full text

    Radiation damage to DNA in DNA-protein complexes

    No full text
    International audienceThe most aggressive product of water radiolysis, the hydroxyl (OH(center dot)) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH(center dot) radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals

    Radiation damage to DNA-protein complexes

    No full text
    International audienceWe review here the advances in understanding the effects of ionizing radiations on DNA, proteins and their complexes, resulting from the collaboration of the authors' teams. It concerns the preponderant indirect effect of low LET ionizing radiations, thus the attack of the macromolecules in aqueous solution by the most aggressive product of water radiolysis, the hydroxyl radical. A model of simulation of the reaction of these radicals with the macromolecules (called RADACK) was developed and was used for calculating the probabilities of damage of each constituent of DNA or proteins (nucleotide or amino-acid). The calculations allowed to draw conclusions from electrophoresis, mutagenesis, spectroscopic (fluorescence, circular dichroïsm) and mass spectrometry experiments. Thus we have shown that the extent and location of the lesions are strongly dependent on the 3D structure of the macromolecules, which in turns is modulated by their sequence and by the binding of some ligands. Molecular dynamics simulation completed our studies in showing the consequences of each lesion on the stability and structure of the proteins and their complexes with DNA

    Alanine Screening Mutagenesis Establishes the Critical Inactivating Damage of Irradiated E. coli Lactose Repressor.

    No full text
    International audienceThe function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor

    Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    No full text
    International audienceThe wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dinners. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro gamma-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain

    Radiation abolishes inducer binding to lactose repressor

    No full text
    corecore