18 research outputs found
Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2 : comparison to observations and climate impacts
Aerosol-cloud interactions contribute to a large portion of the spread in estimates of climate forcing, climate sensitivity and future projections. An important part of this uncertainty is how much new particle formation (NPF) contributes to cloud condensation nuclei (CCN) and, furthermore, how this changes with changes in anthropogenic emissions. Incorporating NPF and early growth in Earth system models (ESMs) is, however, challenging due to uncertain parameters (e.g. participating vapours), structural issues (numerical description of growth from similar to 1 to similar to 100 nm) and the large scale of an ESM grid compared to the NPF scale. A common approach in ESMs is to represent the particle size distribution by a certain number of log-normal modes. Sectional schemes, on the other hand, in which the size distribution is represented by bins, are considered closer to first principles because they do not make an a priori assumption about the size distribution. In order to improve the representation of early growth, we have implemented a sectional scheme for the smallest particles (5-39.6 nm diameter) in the Norwegian Earth System Model (NorESM), feeding particles into the original aerosol scheme. This is, to our knowledge, the first time such an approach has been tried. We find that including the sectional scheme for early growth improves the aerosol number concentration in the model when comparing against observations, particularly in the 50-100 nm diameter range. Furthermore, we find that the model with the sectional scheme produces much fewer particles than the original scheme in polluted regions, while it produces more in remote regions and the free troposphere, indicating a potential impact on the estimated aerosol forcing. Finally, we analyse the effect on cloud-aerosol interactions and find that the effect of changes in NPF efficiency on clouds is highly heterogeneous in space. While in remote regions, more efficient NPF leads to higher cloud droplet number concentration (CDNC), in polluted regions the opposite is in fact the case.Peer reviewe
BVOC-aerosol-climate feedbacks investigated using NorESM
Both higher temperatures and increased CO2 concentrations are (separately) expected to increase the emissions of biogenic volatile organic compounds (BVOCs). This has been proposed to initiate negative climate feedback mechanisms through increased formation of secondary organic aerosol (SOA). More SOA can make the clouds more reflective, which can provide a cooling. Furthermore, the increase in SOA formation has also been proposed to lead to increased aerosol scattering, resulting in an increase in diffuse radiation. This could boost gross primary production (GPP) and further increase BVOC emissions. In this study, we have used the Norwegian Earth System Model (NorESM) to investigate both these feedback mechanisms. Three sets of experiments were set up to quantify the feedback with respect to (1) doubling the CO2, (2) increasing temperatures corresponding to a doubling of CO2 and (3) the combined effect of both doubling CO2 and a warmer climate. For each of these experiments, we ran two simulations, with identical setups, except for the BVOC emissions. One simulation was run with interactive BVOC emissions, allowing the BVOC emissions to respond to changes in CO2 and/or climate. In the other simulation, the BVOC emissions were fixed at present-day conditions, essentially turning the feedback off. The comparison of these two simulations enables us to investigate each step along the feedback as well as estimate their overall relevance for the future climate. We find that the BVOC feedback can have a significant impact on the climate. The annual global BVOC emissions are up to 63 % higher when the feedback is turned on compared to when the feedback is turned off, with the largest response when both CO2 and climate are changed. The higher BVOC levels lead to the formation of more SOA mass (max 53 %) and result in more particles through increased new particle formation as well as larger particles through increased condensation. The corresponding changes in the cloud properties lead to a -0.43 W m(-2) stronger net cloud forcing. This effect becomes about 50 % stronger when the model is run with reduced anthropogenic aerosol emissions, indicating that the feedback will become even more important as we decrease aerosol and precursor emissions. We do not find a boost in GPP due to increased aerosol scattering on a global scale. Instead, the fate of the GPP seems to be controlled by the BVOC effects on the clouds. However, the higher aerosol scattering associated with the higher BVOC emissions is found to also contribute with a potentially important enhanced negative direct forcing (-0.06 W m(-2)). The global total aerosol forcing associated with the feedback is -0.49 W m(-2), indicating that it has the potential to offset about 13 % of the forcing associated with a doubling of CO2.Peer reviewe
Recommended from our members
Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland
Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiala, Finland, between February and September 2014 for the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g m(-2) (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.Peer reviewe
Recommended from our members
Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models
Biogenic volatile organic compounds (BVOCs) emitted from vegetation are oxidised in the atmosphere and can form aerosol particles either by contributing to new particle formation or by condensing onto existing aerosol particles. As the understanding of the importance of BVOCs for aerosol formation has increased over the years, these processes have made their way into Earth system models (ESMs). In this study, sensitivity experiments are run with three different ESMs (the Norwegian Earth System Model (NorESM), EC-Earth and ECHAM) to investigate how the direct and indirect aerosol radiative effects are affected by changes in the formation of secondary organic aerosol (SOA) from BVOCs. In the first two sensitivity model experiments, the yields of SOA precursors from oxidation of BVOCs are changed by ±50 %. For the third sensitivity test, the formed oxidation products do not participate in the formation of new particles but are only allowed to condense onto existing aerosols. In the last two sensitivity experiments, the emissions of BVOC compounds (isoprene and monoterpenes) are turned off, one at a time. The goal of the study is to investigate whether it is of importance to treat SOA formation processes correctly in the models rather than to evaluate the correctness of the current treatment in the models. The results show that the impact on the direct radiative effect (DRE) is linked to the changes in the SOA production in the models, where more SOA leads to a stronger DRE and vice versa. However, the magnitude by which the DRE changes (maximally 0.15 W m-2 globally averaged) in response to the SOA changes varies between the models, with EC-Earth displaying the largest changes. The results for the cloud radiative effects (CREs) are more complicated than for the DRE. The changes in CRE differ more among the ESMs, and for some sensitivity experiments they even have different signs. The most sensitive models are NorESM and EC-Earth, which have CRE changes of up to 0.82 W m-2. The varying responses in the different models are connected to where in the aerosol size distributions the changes in mass and number due to SOA formation occur, in combination with the aerosol number concentration levels in the models. We also find that interactive gas-phase chemistry as well as the new particle formation parameterisation has important implications for the DRE and CRE in some of the sensitivity experiments. The results from this study indicate that BVOC-SOA treatment in ESMs can have a substantial impact on the modelled climate but that the sensitivity varies greatly between the models. Since BVOC emissions have changed historically and will continue to change in the future, the spread in model results found in this study implies uncertainty into ESM estimates of aerosol forcing from land-use change and BVOC feedback strengths. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License
Recommended from our members
Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds
The influence of downwelling stratospheric sulfurous aerosol on the UT (upper troposphere) aerosol concentrations and on cirrus clouds is investigated using CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container observations) (between 1999–2002 and 2005–2013) and the cirrus reflectance product from Moderate Resolution Imaging Spectroradiometer (MODIS). The initial period, 1999–2002, was volcanically quiescent after which the sulfurous aerosol in the LMS (lowermost stratosphere) (SLMS) became enhanced by several volcanic eruptions starting 2005. From 2005 to 2008 and in 2013, volcanic aerosol from several tropical eruptions increased SLMS. Due to consequent subsidence, the sulfur loading of the upper troposphere (SUT) was increased by a factor of 2.5 compared to background levels. Comparison of SLMS and SUT during the seasons March–July and August–November shows a close coupling of the UT and LMS. Finally, the relationship between SLMS and the cirrus cloud reflectance (CR) retrieved from MODIS spectrometer (on board the satellites Terra and Aqua) is studied. SLMS and CR show a strong anticorrelation, with a factor of 3.5 increase in SLMS and decrease of CR by 8 ± 2% over the period 2001–2011. We propose that the increase of SLMS due to volcanism has caused the coinciding cirrus CR decrease, which would be associated with a negative radiative forcing in the Northern Hemisphere midlatitudes
Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models
Biogenic volatile organic compounds (BVOCs) emitted from vegetation are oxidised in the atmosphere and can form aerosol particles either by contributing to new particle formation or by condensing onto existing aerosol particles. As the understanding of the importance of BVOCs for aerosol formation has increased over the years, these processes have made their way into Earth system models (ESMs). In this study, sensitivity experiments are run with three different ESMs (the Norwegian Earth System Model (NorESM), EC-Earth and ECHAM) to investigate how the direct and indirect aerosol radiative effects are affected by changes in the formation of secondary organic aerosol (SOA) from BVOCs. In the first two sensitivity model experiments, the yields of SOA precursors from oxidation of BVOCs are changed by +/- 50 %. For the third sensitivity test, the formed oxidation products do not participate in the formation of new particles but are only allowed to condense onto existing aerosols. In the last two sensitivity experiments, the emissions of BVOC compounds (isoprene and monoterpenes) are turned off, one at a time. The goal of the study is to investigate whether it is of importance to treat SOA formation processes correctly in the models rather than to evaluate the correctness of the current treatment in the models. The results show that the impact on the direct radiative effect (DRE) is linked to the changes in the SOA production in the models, where more SOA leads to a stronger DRE and vice versa. However, the magnitude by which the DRE changes (maximally 0.15 W m(-2) globally averaged) in response to the SOA changes varies between the models, with EC-Earth displaying the largest changes. The results for the cloud radiative effects (CREs) are more complicated than for the DRE. The changes in CRE differ more among the ESMs, and for some sensitivity experiments they even have different signs. The most sensitive models are NorESM and EC-Earth, which have CRE changes of up to 0.82 W m(-2). The varying responses in the different models are connected to where in the aerosol size distributions the changes in mass and number due to SOA formation occur, in combination with the aerosol number concentration levels in the models. We also find that interactive gas-phase chemistry as well as the new particle formation parameterisation has important implications for the DRE and CRE in some of the sensitivity experiments. The results from this study indicate that BVOC-SOA treatment in ESMs can have a substantial impact on the modelled climate but that the sensitivity varies greatly between the models. Since BVOC emissions have changed historically and will continue to change in the future, the spread in model results found in this study implies uncertainty into ESM estimates of aerosol forcing from land-use change and BVOC feedback strengths.Peer reviewe
Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds – Volc Affects S Aerosol in UT and Cirrus
The influence of downwelling stratospheric sulfurous aerosol on the UT (upper troposphere) aerosol concentrations and on cirrus clouds is investigated using CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container observations) (between 1999–2002 and 2005–2013) and the cirrus reflectance product from Moderate Resolution Imaging Spectroradiometer (MODIS). The initial period, 1999–2002, was volcanically quiescent after which the sulfurous aerosol in the LMS (lowermost stratosphere) (S) became enhanced by several volcanic eruptions starting 2005. From 2005 to 2008 and in 2013, volcanic aerosol from several tropical eruptions increased S. Due to consequent subsidence, the sulfur loading of the upper troposphere (S) was increased by a factor of 2.5 compared to background levels. Comparison of SLMS and S during the seasons March–July and August–November shows a close coupling of the UT and LMS. Finally, the relationship between S and the cirrus cloud reflectance (CR) retrieved from MODIS spectrometer (on board the satellites Terra and Aqua) is studied. S and CR show a strong anticorrelation, with a factor of 3.5 increase in SLMS and decrease of CR by 8 ± 2% over the period 2001–2011. We propose that the increase of S due to volcanism has caused the coinciding cirrus CR decrease, which would be associated with a negative radiative forcing in the Northern Hemisphere midlatitudes
External trade monthly statistics 1/1988/Commerce exterieur statistiques mensuelles 1988.1
In
urban environments, airborne particles are continuously emitted,
followed by atmospheric aging. Also, particles emitted elsewhere,
transported by winds, contribute to the urban aerosol. We studied
the effective density (mass-mobility relationship) and mixing state
with respect to the density of particles in central Copenhagen, in
wintertime. The results are related to particle origin, morphology,
and aging. Using a differential mobility analyzer-aerosol particle
mass analyzer (DMA-APM), we determined that particles in the diameter
range of 50–400 nm were of two groups: porous soot aggregates
and more dense particles. Both groups were present at each size in
varying proportions. Two types of temporal variability in the relative
number fraction of the two groups were found: soot correlated with
intense traffic in a diel pattern and dense particles increased during
episodes with long-range transport from polluted continental areas.
The effective density of each group was relatively stable over time,
especially of the soot aggregates, which had effective densities similar
to those observed in laboratory studies of fresh diesel exhaust emissions.
When heated to 300 °C, the soot aggregate volatile mass fraction
was ∼10%. For the dense particles, the volatile mass fraction
varied from ∼80% to nearly 100%
3D dataset from "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models"
This dataset has been produced according to the method described in the paper "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models". This is a 3D global dataset of the concentrations of sulfurdioxide in the stratosphere after the volcanic eruption from Sarychev the 11-21 of June 2009. Data of SO2 concentrations in the stratosphere after the Sarychev 2009 eruption. The data has been put together from the satellite instruments CALIOP and AIRS with the aid of FLEXPART. The data can be used in models as emissions of SO2 from the 2009 Sarychev eruption.Detta dataset har producerats utifrån metoden beskriven i artikeln "Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models". Datat är ett globalt 3D dataset över koncentrationer av svaveldioxid i stratosfären efter vulkanutbrottet från Sarychev den 11-21 juni 2009. Data över SO2 koncentrationer i stratosfären efter vulkanutbrottet från Sarychev 2009. Datat har tagits fram utifrån data från satellit instrumenten CALIOP och AIRS med hjälp av FLEXPART. Datat kan användas i modeller som utsläpp av SO2 från Sarychev utbrottet
On the Relationship of Biogenic Primary and Secondary Organic Aerosol Tracer Compounds on the Aethalometer Model Parameters
The aethalometer model has shown to offer a fast, inexpensive and robust method for source apportionment. The method relies on aerosol light absorption attribution, mass balance of the total carbon and results in a fraction of unaccounted, residual carbon that has been associated to biogenic carbon due to its presumably non-light absorbing properties. This residual carbon and its relation to tracers of biogenic primary and secondary organic aerosol was investigated at a rural measurement station in Sweden. Special focus is devoted to 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a second-generation oxidation compound in biogenic secondary organic aerosols. The results show that the residual carbon and the biogenic tracers show a high degree of correlation and that the tracers were highly seasonally dependent with largest carbon contributions during summer. MBTCA showed positive correlation with the aethalometer model derived absorption coefficients from fossil fuel carbonaceous aerosol, stressing the suspicion that biogenic aerosol might be falsely apportioned to fossil fuel carbon in the aethalometer model. MBTCA showed an increasing degree of correlation with higher aethalometer absorption coefficient wavelengths. However, spectrophotometric analysis revealed that the ambient concentrations of MBTCA are most likely to low to give a significant response in the aethalometer. These results support the application of MBTCA as a molecular tracer for biogenic secondary organic aerosol and indicates that a large fraction of the aethalometer model residual carbon is of biogenic origin. Future studies should investigate the light absorbing properties of precursor monoterpenes such as α-pinene, their oxidation products and eventual influence on the aethalometer model