6 research outputs found
CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis
CTGF is a secreted matricellular protein with very complex biology. It has been shown to modulate many signaling pathways leading to cell adhesion and migration, angiogenesis, myofibroblast activation, and extracellular matrix deposition and remodeling, which together lead to tissue remodeling and fibrosis. It has been reported in the literature that inhibition of CTGF expression by siRNA prevents CCl4-induced liver fibrosis and can reverse fibrosis when administered after significant collagen deposition is observed. A monoclonal antibody to CTGF that is currently in clinical development (FG-3019) has demonstrated the ability to reverse vascular stiffening and improve cardiac function in a rat model of diabetic complications. FG-3019 has also exhibited activity in a murine radiation-induced pulmonary fibrosis model. When FG-3019 was administered to mice after a significant radiation-induced increase in lung density could be observed by CT imaging, the density of the lungs was observed to decrease over the period during which the antibody was administered and to remain stable after therapy had ceased. When considered together, these data indicate that inhibition of CTGF can prevent and reverse the process of fibrosis
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Mature Human Thymocytes Migrate on Laminin-5 with Activation of Metalloproteinase-14 and Cleavage of CD44
International audienceWe have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases. Interactions of thymocytes with laminin-5 induced a strong up-regulation of active metalloproteinase-14. However, we found that thymocytes did not cleave the laminin-5 gamma(2) chain, suggesting that they do not use the same pathway as epithelial cells to migrate on laminin-5. Interactions of thymocytes with laminin-5 also induced the release of a soluble fragment of CD44 cell surface molecule. Moreover, CD44-rich supernatants induced thymocyte migration in contrast with supernatants depleted in CD44 by immunoadsorption. CD44 cleavage was recently reported to be due to metalloproteinase-14 activation and led to increased migration in cancer cells. Thus, in this study, we show that laminin-5 promotes human mature thymocyte migration in vitro via a multimolecular mechanism involving laminin-5 integrin receptors, metalloproteinase-14 and CD44. These data suggest that, in vivo, laminin-5 may function in the migration of mature thymocytes within the medulla and be part of the thymic emigration process.We have previously shown that laminin-5 is expressed in the human thymic medulla, in which mature thymocytes are located. We now report that laminin-5 promotes migration of mature medullary thymocytes, whereas it has no effect on cortical immature thymocytes. Migration was inhibited by blocking mAbs directed against laminin-5 integrin receptors and by inhibitors of metalloproteinases. Interactions of thymocytes with laminin-5 induced a strong up-regulation of active metalloproteinase-14. However, we found that thymocytes did not cleave the laminin-5 gamma(2) chain, suggesting that they do not use the same pathway as epithelial cells to migrate on laminin-5. Interactions of thymocytes with laminin-5 also induced the release of a soluble fragment of CD44 cell surface molecule. Moreover, CD44-rich supernatants induced thymocyte migration in contrast with supernatants depleted in CD44 by immunoadsorption. CD44 cleavage was recently reported to be due to metalloproteinase-14 activation and led to increased migration in cancer cells. Thus, in this study, we show that laminin-5 promotes human mature thymocyte migration in vitro via a multimolecular mechanism involving laminin-5 integrin receptors, metalloproteinase-14 and CD44. These data suggest that, in vivo, laminin-5 may function in the migration of mature thymocytes within the medulla and be part of the thymic emigration process
Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer
Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer