1,844 research outputs found
Adaptive weight estimator for quantum error correction
Quantum error correction of a surface code or repetition code requires the
pairwise matching of error events in a space-time graph of qubit measurements,
such that the total weight of the matching is minimized. The input weights
follow from a physical model of the error processes that affect the qubits.
This approach becomes problematic if the system has sources of error that
change over time. Here we show how the weights can be determined from the
measured data in the absence of an error model. The resulting adaptive decoder
performs well in a time-dependent environment, provided that the characteristic
time scale of the variations is greater than , with the duration of one error-correction cycle and
the typical error probability per qubit in one cycle.Comment: 5 pages, 4 figure
Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection
chamber designed to collect neutrino interactions from the NuMI beam at Fermi
National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam
line directly upstream of the MINOS Near Detector from September 2009 to
February 2010, during which thousands of neutrino and antineutrino events were
collected. The MINOS Near Detector was used to measure muons downstream of
ArgoNeuT. Though ArgoNeuT is primarily an R&D project, the data collected
provide a unique opportunity to measure neutrino cross sections in the 0.1-10
GeV energy range. Fully reconstructing the muon from these interactions is
imperative for these measurements. This paper focuses on the complete kinematic
reconstruction of neutrino-induced through-going muons tracks. Analysis of this
high statistics sample of minimum ionizing tracks demonstrates the reliability
of the geometric and calorimetric reconstruction in the ArgoNeuT detector
Givental graphs and inversion symmetry
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius
manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger
transformations of a special ODE associated to a Frobenius manifold. In this
paper, we review the Givental group action on Frobenius manifolds in terms of
Feynman graphs and obtain an interpretation of the inversion symmetry in terms
of the action of the Givental group. We also consider the implication of this
interpretation of the inversion symmetry for the Schlesinger transformations
and for the Hamiltonians of the associated principle hierarchy.Comment: 26 pages; revised according to the referees' remark
Congenital tumors and nonimmune hydrops fetalis
Peer Reviewe
Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes
Background: Susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes may reflect the way a person deals with carcinogenic challenges. This susceptibility (also referred to as mutagen sensitivity) has been found to be increased in patients with environmentally related cancers, including cancers of the head and neck, lung, and colon, and, in combination with carcinogenic exposure, this susceptibility can greatly influence cancer risk. The purpose of this study was to assess the heritability of mutagen sensitivity. Methods: Heritability was determined by use of a maximum likelihood method that employed the FISHER package of pedigree analysis. Bleomycin-induced breaks per cell values for 135 healthy volunteers without cancer were determined. These individuals were from 53 different pedigrees and included 25 monozygotic twin pairs (n = 50), 14 pairs of dizygotes (twin pairs and siblings, n = 28), and 14 families selected on the basis of a first-degree relative who was successfully treated for head and neck cancer and who had no sign of recurrence for at least 1 year. All data were analyzed simultaneously, and different models of familial resemblance were fitted to the data. All P values are two-sided. Results: Our results showed no evidence for the influence of a shared family environment on bleomycin-induced chromatid breaks. Genetic influences, however, were statistically significant (P = .036) and accounted for 75% of the total variance. Conclusions: The high heritability estimate of the susceptibility to bleomycin-induced chromatid breaks indicates a clear genetic basis. The findings of this study support the notion that a common genetic susceptibility to DNA damage - and thereby a susceptibility to cancer - may exist in the general population
- …