5 research outputs found

    Electrically Conductive Electrospun Polymeric Mats for Sensing Dispersed Vegetable Oil Impurities in Wastewater

    No full text
    This paper addresses the preparation of electrically conductive electrospun mats on a base of styrene-isoprene-styrene copolymer (SIS) and multiwall carbon nanotubes (CNTs) and their application as active sensing elements for the detection of vegetable oil impurities dispersed within water. The most uniform mats without beads were prepared using tetrahydrofuran (THF)/dimethyl formamide (DMF) 80:20 (v/v) as the solvent and 13 wt.% of SIS. The CNT content was 10 wt.%, which had the most pronounced changes in electrical resistivity upon sorption of the oil component. The sensors were prepared by deposition of the SIS/CNT layer onto gold electrodes through electrospinning and applied for sensing of oil dispersed in water for 50, 100, and 1000 ppm

    Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines

    No full text
    Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV-Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much

    Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging

    No full text
    The addition of heteroatoms to pristine carbon quantum dots (CQDs) change their structure and optical properties. In this study, fluorine (F)- and chlorine (Cl)-doped CQDs are prepared by the one-step green hydrothermal route from sodium fluoride, sodium chloride, urea, and citric acid as the starting precursors. Microscopy analysis reveals that the average size of these quantum dots is 5 +/- 2 nm, whereas the chemical study shows the existence of C-F and C-Cl bonds. The produced F- and Cl-doped CQDs have fluorescence quantum yields of 0.151 and 0.284, respectively, at an excitation wavelength of 450 nm. Charge transfer resistance of F- and Cl-doped CQDs films is 2 orders of magnitude higher than in the pristine CQD films. Transport band gap of the doped CQDs is 2 eV bigger than that of pristine CQDs. Radical scavenging activity shows very good antioxidant activity of doped CQDs. Antibacterial testing reveals poor antibacterial activity against Staphylococcus aureus and Escherichia coli. The F- and Cl-doped CQDs are successfully used as fluorescent probes for cell imaging as shown by confocal microscopy
    corecore