33 research outputs found

    Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2<SUP>-/-</SUP> mice

    Get PDF
    24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury

    Fisiopatologia dell'epitelio biliare: meccanismi di secrezione ionica, loro regolazione purinergica ed effetto delle citochine proinfiammatorie

    No full text
    Dottorato di ricerca in fisiopatologia epatodigestiva. 11. ciclo. Coordinatore e tutore Lajos OkolicsanyiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - Piazza Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Cell Interactions in Biliary Diseases: Clues from Pathophysiology and Repair Mechanisms to Foster Early Assessment

    No full text
    In modern hepatology, diseases of the biliary epithelium, currently termed cholangiopathies, represent one of the main gaps in knowledge, both on experimental and clinical grounds, though they started to draw attention since the late 80s [...

    Emerging Concepts in Biliary Repair and Fibrosis

    No full text
    Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the re-activation of a variety of morphogenetic signals. Chronic damage and inflammation, will ultimately result in pathologic repair, with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathologic biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin, able to orchestrate a complex process that involves a number of different cell types, along with inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review, contributes to the ongoing debate, highlighting a number of new concepts emerging from the study of the pathophysiology of chronic progressive cholangiopathies, such as Congenital Hepatic Fibrosis, Biliary Atresia, and Alagille Syndrome

    Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases

    No full text
    Liver diseases negatively impact the quality of life and survival of patients, and often require liver transplantation in cases that progress to organ failure. Understanding the cellular and molecular mechanisms of liver development and pathogenesis has been a challenging task, in part for the lack of adequate cellular models directly relevant to the human diseases. Recent technological advances in the stem cell field have shown the potentiality of induced pluripotent stem cells (iPSC) and liver organoids as the next generation tool to model in vitro liver diseases. Hepatocyte-like cells and cholangiocyte are currently being generated from skin fibroblasts and mononuclear blood cells reprogrammed into iPSC and have been successfully used for disease modeling, drug testing and gene editing, with the hope to be able to find application also in regenerative medicine. Protocols to generate other liver cell types are still under development, but the field is advancing rapidly. On the other end, liver cells can now be isolated from liver specimens (liver explants or liver biopsies) and cultured in specific conditions to form polarized 3D organoids. The purpose of this review is to summarize all these recent technological advances and their potential applications but also to analyze the current issues to be addressed before the technology can reach its full potential

    Animal models of cholestasis: An update on inflammatory cholangiopathies

    No full text
    Cholestasis is a frequent clinical condition initiating or complicating chronic liver diseases, particularly cholangiopathies, where the biliary epithelium is the primary target of the pathogenetic sequence. Until a few decades ago, understanding of cholestasis relied mostly on the experimental model of bile duct ligation in rodents. However, a simple model of biliary obstruction cannot reproduce the complex mechanisms and networks leading to cholestasis in cholangiopathies. These networks are underpinned by an intricate dysregulation of pro-inflammatory and pro-fibrotic signals involving besides cholangiocytes, multiple cell elements of both innate and adaptive immunity. Therefore, in the last years, a wide range of animal models of biliary injury have been developed, mostly in mice, following three main approaches, chemical induction, immunization and genetic manipulation. In this review, we will give an update of the animal models of the two main cholangiopathies, primary sclerosing cholangitis and primary biliary cholangitis, which have provided us with the most relevant insights into the pathogenesis of these still controversial diseases

    Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease

    No full text
    BACKGROUND & AIMS: Genetic defects in polycystin-1 or -2 (PC1 or PC2) cause polycystic liver disease associated with autosomal dominant polycystic kidney disease (PLD-ADPKD). Progressive cyst growth is sustained by a cAMP-dependent Ras/ERK/HIF\u3b1 pathway, leading to increased vascular endothelial growth factor A (VEGF-A) signaling. In PC2-defective cholangiocytes, cAMP production in response to [Ca2+]ER depletion is increased, while store-operated Ca2+ entry (SOCE), intracellular and endoplasmic reticulum [Ca2+]ER levels are reduced. We investigated whether the adenylyl cyclases, AC5 and AC6, which can be inhibited by Ca2+, are activated by the ER chaperone STIM1. This would result in cAMP/PKA-dependent Ras/ERK/HIF\u3b1 pathway activation in PC2-defective cells, in response to [Ca2+]ER depletion. METHODS: PC2/AC6 double conditional knockout (KO) mice were generated (Pkd2/AC6 KO) and compared to Pkd2 KO mice. The AC5 inhibitor SQ22,536 or AC5 siRNA were used in isolated cholangiocytes while the inhibitor was used in biliary organoid and animals; liver tissues were harvested for histochemical analysis. RESULTS: When comparing Pkd2/AC6 KO to Pkd2 KO mice, no decrease in liver cyst size was found, and cellular cAMP after [Ca2+]ER depletion only decreased by 12%. Conversely, in PC2-defective cells, inhibition of AC5 significantly reduced cAMP production, pERK1/2 expression and VEGF-A secretion. AC5 inhibitors significantly reduced growth of biliary organoids derived from Pkd2 KO and Pkd2/AC6 KO mice. In vivo treatment with SQ22,536 significantly reduced liver cystic area and cell proliferation in PC2-defective mice. After [Ca2+]ER depletion in PC2-defective cells, STIM1 interacts with AC5 but not with Orai1, the Ca2+ channel that mediates SOCE. CONCLUSION: [Ca2+]ER depletion in PC2-defective cells activates AC5 and results in stimulation of cAMP/ERK1-2 signaling, VEGF production and cyst growth. This mechanism may represent a novel therapeutic target. LAY SUMMARY: Polycystic liver diseases are characterized by progressive cyst growth until their complications mandate surgery or liver transplantation. In this manuscript, we demonstrate that inhibiting cell proliferation, which is induced by increased levels of cAMP, may represent a novel therapeutic target to slow the progression of the disease
    corecore