1,131 research outputs found

    QCD Corrections to SUSY Higgs Production: The Role of Squark Loops

    Get PDF
    We calculate the two-loop QCD corrections to the production of the neutral supersymmetric Higgs bosons via the gluon fusion mechanism at hadron colliders, including the contributions of squark loops. To a good approximation, these additional contributions lead to the same QCD corrections as in the case where only top and bottom quark loops are taken into account. The QCD corrections are large and increase the Higgs production cross sections significantly.Comment: 5 pages, latex, 2 figure

    Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion

    Full text link
    The weak-boson fusion process is expected to provide crucial information on Higgs boson couplings at the Large Hadron Collider at CERN. The achievable statistical accuracy demands comparison with next-to-leading order QCD calculations, which are presented here in the form of a fully flexible parton Monte Carlo program. QCD corrections are determined for jet distributions and are shown to be modest, of order 5 to 10% in most cases, but reaching 30% occasionally. Remaining scale uncertainties range from order 5% or less for distributions to below +-2% for the Higgs boson cross section in typical weak-boson fusion search regions.Comment: 19 pages, 8 figure

    Top quark associated production of topcolor pions at hadron colliders

    Get PDF
    We investigate the associated production of a neutral physical pion with top quarks in the context of topcolor assisted technicolor. We find that single-top associated production does not yield viable rates at either the Tevatron or LHC. tt-associated production at the Tevatron is suppressed relative to Standard Model ttH, but at the LHC is strongly enhanced and would allow for easy observation of the main decay channels to bottom quarks, and possible observation of the decay to gluons.Comment: 13 pages, 4 figures, submitted to PR

    Determining the Higgs Boson Self Coupling at Hadron Colliders

    Get PDF
    Inclusive Standard Model Higgs boson pair production at hadron colliders has the capability to determine the Higgs boson self-coupling, lambda. We present a detailed analysis of the gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)(jj{l'}^\pm\nu) and gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)({l'}^\pm\nu {l''}^\mp\nu) (l, {l'}, {l''}=e, \mu) signal channels, and the relevant background processes, for the CERN Large Hadron Collider, and a future Very Large Hadron Collider operating at a center-of-mass energy of 200 TeV. We also derive quantitative sensitivity limits for lambda. We find that it should be possible at the LHC with design luminosity to establish that the Standard Model Higgs boson has a non-zero self-coupling and that lambda / lambda_{SM} can be restricted to a range of 0-3.8 at 95% confidence level (CL) if its mass is between 150 and 200 GeV. At a 200 TeV collider with an integrated luminosity of 300 fb^{-1}, lambda can be determined with an accuracy of 8 - 25% at 95% CL in the same mass range.Comment: 28 pages, Revtex3, 9 figures, 3 table

    Determining the Structure of Higgs Couplings at the LHC

    Get PDF
    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR

    Robust LHC Higgs Search in Weak Boson Fusion

    Full text link
    We demonstrate that an LHC Higgs search in weak boson fusion production with subsequent decay to weak boson pairs is robust against extensions of the Standard Model or MSSM involving a large number of Higgs doublets. We also show that the transverse mass distribution provides unambiguous discrimination of a continuum Higgs signal from the Standard Model.Comment: 12p, 2 figs., additional comments on backgrounds, version to appear in PR

    Rompimiento de la Simetria Electrodebil y la Fisica del Higgs: Conceptos Basicos

    Full text link
    Presentamos una introduccion a los conceptos basicos del rompimiento de la simetria electrodebil y la fisica del Higgs dentro del Modelo Estandar y sus extensiones supersimetricas. Se presenta tambien una breve perspectiva general de mecanismos alternativos del rompimiento de la simetria. Ademas de las bases teoricas, se discute el estado actual de la fisica experimental del Higgs y sus implicaciones para futuros experimentos en el LHC y en colisionadores lineales e+e-.Comment: Spanish text, including full English translation. Published in the Proceedings of the XI Mexican School on Particles and Fields, Xalapa, Veracruz, Mexic

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi

    Higgs production and decay: Analytic results at next-to-leading order QCD

    Full text link
    The virtual two-loop corrections for Higgs production in gluon fusion are calculated analytically in QCD for arbitrary Higgs and quark masses. Both scalar and pseudo-scalar Higgs bosons are considered. The results are obtained by expanding the known one-dimensional integral representation in terms of m_H/m_q, and matching it with a suitably chosen ansatz of Harmonic Polylogarithms. This ansatz is motivated by the known analytic result for the Higgs decay rate into two photons. The method also allows us to check this result and to extend it to the pseudo-scalar decay rate.Comment: LaTeX, 16 pages, 5 figures (8 eps-files

    Next-to-leading order QCD predictions for Z0H0+jetZ^0 H^0 + {\rm jet} production at LHC

    Full text link
    We calculate the complete next-to-leading order (NLO) QCD corrections to the Z0H0Z^0H^0 production in association with a jet at the LHC. We study the impacts of the NLO QCD radiative corrections to the integrated and differential cross sections and the dependence of the cross section on the factorization/renormalization scale. We present the transverse momentum distributions of the final Z0Z^0-, Higgs-boson and leading-jet. We find that the NLO QCD corrections significantly modify the physical observables, and obviously reduce the scale uncertainty of the LO cross section. The QCD K-factors can be 1.183 and 1.180 at the s=14TeV\sqrt{s}=14 TeV and s=7TeV\sqrt{s}=7 TeV LHC respectively, when we adopt the inclusive event selection scheme with pT,jcut=50GeVp_{T,j}^{cut}=50 GeV, mH=120GeVm_H=120 GeV and ÎŒ=ÎŒr=ÎŒf=ÎŒ0≡1/2(mZ+mH)\mu=\mu_r=\mu_f=\mu_0 \equiv 1/2(m_Z+m_H). Furthermore, we make the comparison between the two scale choices, ÎŒ=ÎŒ0\mu=\mu_0 and ÎŒ=ÎŒ1=1/2(ETZ+ETH+∑jETjet)\mu=\mu_1=1/2(E_{T}^{Z}+E_{T}^{H}+ \sum_{j}E_{T}^{jet}), and find the scale choice ÎŒ=ÎŒ1\mu=\mu_1 seems to be more appropriate than the fixed scale ÎŒ=ÎŒ0\mu=\mu_0.Comment: 18 pages, 7 figure
    • 

    corecore