24 research outputs found

    Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage

    Get PDF
    PURPOSE: The contribution of axonal injury to brain damage after aneurysmal subarachnoid haemorrhage (aSAH) is unknown. Neurofilament light chain (NF-L), a component of the axonal cytoskeleton, has been shown to be elevated in the cerebrospinal fluid of patients with many types of axonal injury. We hypothesised that patients with aSAH would have elevated cerebrospinal fluid (CSF) NF-L levels and sought to explore the clinical correlates of CSF NF-L dynamics. METHODS: Serial ventricular CSF (vCSF) samples were collected from 35 patients with aSAH for up to 15 days. vCSF NF-L measurements were determined by enzyme-linked immunosorbent assay. NF-L levels were analysed in relation to acute clinical status, radiological findings and 6-month outcomes. RESULTS: vCSF NF-L concentrations were elevated in all patients with aSAH. Patients with early cerebral ischaemia (ECI), defined as a CT hypodense lesion visible within the first 3 days, had higher acute vCSF NF-L levels than patients without ECI. These elevated NF-L levels were similar in patients with ECI associated with intracranial haemorrhage and ECI associated with surgical/endovascular complications. vCSF NF-L levels did not differ as a function of acute clinical status, clinical vasospasm, delayed cerebral ischaemia or 6-month Glasgow Outcome Scale. CONCLUSIONS: Elevated vCSF NF-L levels may in part reflect increased injury to axons associated with ECI. However, our results suggest that axonal injury after aSAH as reflected by release of NF-L into the CSF may not play a major role in either secondary adverse events or long-term clinical outcome

    Imaging of peripheral nerves INTRODUCTION

    No full text
    Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Misdirection and guidance of regenerating axons after experimental nerve injury and repair A review

    No full text
    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin, and vice versa - that is, sensory axons projecting toward muscle. In the repair of motor nerves innervating different distal targets, misdirection may result in reinnervation of the wrong target muscle, which might function antagonistically. In sensory nerve repair, misdirection might give an increased perceptual territory. After median nerve repair, for example, this might lead to a dysfunctional hand. Different factors may be involved in the misdirection of regenerating axons, and there may be various mechanisms that can later correct for misdirection. In this review the authors discuss these different factors and mechanisms that act along the pathway of the regenerating axon. The authors review recently developed evaluation methods that can be used to investigate the accuracy of regeneration after nerve injury and repair (including the use of transgenic fluorescent mice, retrograde tracing techniques, and motion analysis). In addition, the authors discuss new strategies that can improve in vivo guidance of regenerating axons (including physical guidance with multichannel nerve tubes and biological guidance accomplished using gene therapy). ©AANS, 2014

    CTNNB1 mutations and estrogen receptor expression in neuromuscular choristoma and its associated fibromatosis

    No full text
    Neuromuscular choristoma (NMC) is a very rare, developmental malformation characterized by the endoneurial intercalation of mature muscle fibers among peripheral nerve fibers. NMC typically arises in the major proximal peripheral nerves, most commonly the sciatic nerve, and may involve the lumbosacral and brachial plexus. Patients present clinically with progressive neuropathy or plexopathy. NMC is strongly associated with development of a fibromatosis, histologically identical to conventional desmoid-type fibromatosis (NMC-fibromatosis). The development of NMC-fibromatosis is often precipitated by iatrogenic trauma (ie, biopsy). Desmoid-type fibromatosis is characterized by CTNNB1 exon 3 mutations, which result in aberrant nuclear \u3b2-catenin localization and dysregulated canonical Wnt signaling. In contrast, the pathogenesis of NMC and NMC-fibromatosis is unknown. Desmoid-type fibromatosis expresses estrogen receptors (ER), specifically the ER-beta isoform (ER\u3b2), and endocrine therapies may be used in surgically unresectable cases. In contrast, the ER expression profile of NMC-fibromatosis is unknown. We evaluated a series of NMC and NMC-fibromatosis for CTNNB1 mutations, \u3b2-catenin expression, and ER isoform expression. Five NMCs occurred in 2 female and 3 male patients (median age: 14 y, range <1 to 42 y), as masses involving the sciatic nerve (N=4) or brachial plexus (N=1). Four (of 5) NMCs had CTNNB1 mutations: 3 c.134 C>T (p.S45F) and 1 c.121 A>G (p.T41A). Four patients subsequently developed NMC-fibromatosis, and all 4 cases contained CTNNB1 mutations, including 1 p.T41A and 3 p.S45F mutations. In 3 patients, the NMC and NMC-fibromatosis had identical CTNNB1 mutations. Only 1 NMC had no detectable CTNNB1 mutation; however, the patient's subsequent NMCfibromatosis had a CTNNB1 p.T41A mutation. All NMC and NMC-fibromatosis showed aberrant nuclear localization of \u3b2-catenin, nuclear ER\u3b2 expression, and no ER\u3b1 expression. The presence of CTNNB1 mutations both in NMC and NMC-fibromatosis may be a shared molecular genetic abnormality underlying their pathogenesis

    In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres

    No full text
    Regeneration of peripheral nerves after injury is suboptimal. We now report the long term delivery of nerve growth factor (NGF) by biodegradable poly-lactic-co-glycolic acid (PLGA) microspheres in vitro and in vivo. Lactic to glycolic acid ratios of 50:50 and 85:15 were fabricated using the double emulsion solvent, evaporation technique. Three different inherent viscosities (0.1 dL g(-1):1A 0.4 dL g(-1):4A, 0.7 dL g(-1):7A) were analyzed. In vitro, release of NGF for 23 days was measured. Electron microscopy demonstrated intact spheres for at least 7 days (50:50 1A), 14 days (50:50 4A), or 35 days (50:50 7A and 85:15 7A). In vitro release kinetics was characterized by burst release, followed by release of NGF at a rate of 0.6-1.6% a day. Release curves for 50:50 1A and 85:15 7A differed significantly from other compositions (p < 0.01). In vivo, release was characterized by a novel radionuclide tracking assay. Release rates varied from 0.9 to 2.2% per day with linear kinetics. All but the 85:15 type of spheres showed different release profiles in vivo compared to in vitro conditions. On the basis of the surface morphology and release profiles, we found microspheres fabricated from 50:50 4A PLGA to be best suited for the use in a rat sciatic nerve injury model. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 1067-1073,2010.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres

    No full text
    Regeneration of peripheral nerves after injury is suboptimal. We now report the long term delivery of nerve growth factor (NGF) by biodegradable poly-lactic-co-glycolic acid (PLGA) microspheres in vitro and in vivo. Lactic to glycolic acid ratios of 50:50 and 85:15 were fabricated using the double emulsion solvent, evaporation technique. Three different inherent viscosities (0.1 dL g(-1):1A 0.4 dL g(-1):4A, 0.7 dL g(-1):7A) were analyzed. In vitro, release of NGF for 23 days was measured. Electron microscopy demonstrated intact spheres for at least 7 days (50:50 1A), 14 days (50:50 4A), or 35 days (50:50 7A and 85:15 7A). In vitro release kinetics was characterized by burst release, followed by release of NGF at a rate of 0.6-1.6% a day. Release curves for 50:50 1A and 85:15 7A differed significantly from other compositions (p < 0.01). In vivo, release was characterized by a novel radionuclide tracking assay. Release rates varied from 0.9 to 2.2% per day with linear kinetics. All but the 85:15 type of spheres showed different release profiles in vivo compared to in vitro conditions. On the basis of the surface morphology and release profiles, we found microspheres fabricated from 50:50 4A PLGA to be best suited for the use in a rat sciatic nerve injury model. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 1067-1073,2010

    Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit

    No full text
    Single channel conduits are used clinically in nerve repair as an alternative to the autologous nerve graft. Axons regenerating across single channel tubes, however, may disperse resulting in inappropriate target reinnervation. This dispersion may be limited by multichannel nerve conduits as they resemble the structure of nerve multiple basal lamina tubes. In this study, we investigated the influence of channel number on the axonal regeneration using a series of 1-, 2-, 4-, and 7-channel collagen conduits and commercial (NeuraGen (R)) single channel conduits. Nerve conduits were implanted in rats with a 1 cm gap of sciatic nerve. After four months, quantitative results of regeneration were evaluated with nerve morphometry and the accuracy of regeneration was assessed using retrograde tracing: two tracers being applied simultaneously to tibial and peroneal nerves to determine the percentage of motor neurons with double projections. Recovery of function was investigated with compound muscle action potential recordings and ankle motion analysis. We showed that the fabricated 1-channel and 4-channel conduits are superior to other types of conduits in axonal regeneration. Simultaneous tracing showed a significantly lower percentage of motor neurons with double projections after 2- and 4-channel compared with 1-channel conduit repair. This study shows the potential influence of multichannel guidance on limiting dispersion without decreasing quantitative results of regeneration. (C) 2010 Elsevier Ltd. All rights reserved.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Can intraneural perineuriomas occur intradurally? An anatomic perspective

    No full text
    BACKGROUND: Intraneural perineuriomas are rare, benign lesions produced by the neoplastic proliferation of perineurial cells. They typically present in adolescents and affect nerves of the limbs. In our experience, we have not encountered a single case of classic intraneural perineurioma at an intradural location. OBJECTIVE: To determine whether intraneural perineuriomas could occur intradurally, given the prevalence of intradural nerve sheath tumors, and explain our findings with an anatomic perspective. METHODS: We retrospectively reviewed the high-resolution magnetic resonance images of 56 patients from an institutional registry of patients with intraneural perineurioma. All cases were analyzed for signs of proximal extension toward spinal nerves, roots, and spinal cord. A literature review was performed. The clinical, radiological, and histopathological features of potential intradural lesions were critically appraised against strict criteria for a diagnosis of classic intraneural perineurioma. RESULTS: Fifteen of 56 (27%) patients with intraneural perineurioma had a proximal localization in the lumbosacral or brachial plexus. Not a single case occurred proximal to the dorsal root ganglia (DRG). One case of trigeminal intraneural perineurioma occurred distal to the gasserian ganglion. A literature review did not reveal any convincing cases of classic intraneural perineuriomas occurring in an intraspinal intradural location and revealed only 1 possible case in an intracranial intradural location. CONCLUSION: Based on our study, the occurrence of classic intraneural perineuriomas intradurally is exceedingly rare, if at all present. This may be related to the paucity of perineurial cells at the nerve root level and reciprocal interactions between neuroglial cells at the central-to-peripheral transition zones
    corecore