119 research outputs found
The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
We sketch the main features of the Noether Symmetry Approach, a method to reduce and solve dynamics of physical systems by selecting Noether symmetries, which correspond to conserved quantities. Specifically, we take into account the vanishing Lie derivative condition for general canonical Lagrangians to select symmetries. Furthermore, we extend the prescription to the first prolongation of the Noether vector. It is possible to show that the latter application provides a general constraint on the infinitesimal generator xi, related to the spacetime translations. This approach can be used for several applications. In the second part of the work, we consider a gravity theory, including the coupling between a scalar field phi and the Gauss-Bonnet topological term G. In particular, we study a gravitational action containing the function F(G,phi) and select viable models by the existence of symmetries. Finally, we evaluate the selected models in a spatially flat cosmological background and use symmetries to find exact solutions
Craniofacial osteomas: From diagnosis to therapy
An osteoma is a benign bone lesion with no clear pathogenesis, almost exclusive to the craniofacial area. Osteomas show very slow continuous growth, even in adulthood, unlike other bony lesions. Since these lesions are frequently asymptomatic, the diagnosis is usually made by plain radiography or by a computed tomography (CT) scan performed for other reasons. Rarely, the extensive growth could determine aesthetic or functional problems that vary according to different locations. Radiographically, osteomas appear as radiopaque lesions similar to bone cortex, and may determine bone expansion. Cone beam CT is the optimal imaging modality for assessing the relationship between osteomas and adjacent structures, and for surgical planning. The differential diagnosis includes several inflammatory and tumoral pathologies, but the typical craniofacial location may aid in the diagnosis. Due to the benign nature of osteomas, surgical treatment is limited to symptomatic lesions. Radical surgical resection is the gold standard therapy; it is based on a minimally invasive surgical approach with the aim of achieving an optimal cosmetic result. Reconstructive surgery for an osteoma is quite infrequent and reserved for patients with large central osteomas, such as big mandibular or maxillary lesions. In this regard, computer-assisted surgery guarantees better outcomes, providing the possibility of preoperative simulation of demolitive and reconstructive surgery
Dynamical friction of massive objects in galactic centres
Dynamical friction leads to an orbital decay of massive objects like young
compact star clusters or Massive Black Holes in central regions of galaxies.
The dynamical friction force can be well approximated by Chandrasekhar's
standard formula, but recent investigations show, that corrections to the
Coulomb logarithm are necessary. With a large set of N-body simulations we show
that the improved formula for the Coulomb logarithm fits the orbital decay very
well for circular and eccentric orbits. The local scale-length of the
background density distribution serves as the maximum impact parameter for a
wide range of power-law indices of -1 ... -5. For each type of code the
numerical resolution must be compared to the effective minimum impact parameter
in order to determine the Coulomb logarithm. We also quantify the correction
factors by using self-consistent velocity distribution functions instead of the
standard Maxwellian often used. These factors enter directly the decay
timescale and cover a range of 0.5 ... 3 for typical orbits. The new Coulomb
logarithm combined with self-consistent velocity distribution functions in the
Chandrasekhar formula provides a significant improvement of orbital decay times
with correction up to one order of magnitude compared to the standard case. We
suggest the general use of the improved formula in parameter studies as well as
in special applications.Comment: 22 pages, 28 figures, accepted by MNRA
Analysis of factors influencing the ultrasonic fetal weight estimation
Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation
Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam
During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks
for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton
beam bunches, separated by 100 ns. This tightly bunched beam structure allows a
very accurate time of flight measurement of neutrinos from CERN to LNGS on an
event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing
synchronization have been substantially improved for this campaign, taking
ad-vantage of additional independent GPS receivers, both at CERN and LNGS as
well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS.
The ICARUS-T600 detector has collected 25 beam-associated events; the
corresponding time of flight has been accurately evaluated, using all different
time synchronization paths. The measured neutrino time of flight is compatible
with the arrival of all events with speed equivalent to the one of light: the
difference between the expected value based on the speed of light and the
measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This
result is in agreement with the value previously reported by the ICARUS
collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with
improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl
Consolidative thoracic radiation therapy for extensive-stage small cell lung cancer in the era of first-line chemoimmunotherapy: preclinical data and a retrospective study in Southern Italy
Background: Consolidative thoracic radiotherapy (TRT) has been commonly used in the management of extensive-stage small cell lung cancer (ES-SCLC). Nevertheless, phase III trials exploring first-line chemoimmunotherapy have excluded this treatment approach. However, there is a strong biological rationale to support the use of radiotherapy (RT) as a boost to sustain anti-tumor immune responses. Currently, the benefit of TRT after chemoimmunotherapy remains unclear. The present report describes the real-world experiences of 120 patients with ES-SCLC treated with different chemoimmunotherapy combinations. Preclinical data supporting the hypothesis of anti-tumor immune responses induced by RT are also presented. Methods: A total of 120 ES-SCLC patients treated with chemoimmunotherapy since 2019 in the South of Italy were retrospectively analyzed. None of the patients included in the analysis experienced disease progression after undergoing first-line chemoimmunotherapy. Of these, 59 patients underwent TRT after a multidisciplinary decision by the treatment team. Patient characteristics, chemoimmunotherapy schedule, and timing of TRT onset were assessed. Safety served as the primary endpoint, while efficacy measured in terms of overall survival (OS) and progression-free survival (PFS) was used as the secondary endpoint. Immune pathway activation induced by RT in SCLC cells was explored to investigate the biological rationale for combining RT and immunotherapy. Results: Preclinical data supported the activation of innate immune pathways, including the STimulator of INterferon pathway (STING), gamma-interferon-inducible protein (IFI-16), and mitochondrial antiviral-signaling protein (MAVS) related to DNA and RNA release. Clinical data showed that TRT was associated with a good safety profile. Of the 59 patients treated with TRT, only 10% experienced radiation toxicity, while no ≥ G3 radiation-induced adverse events occurred. The median time for TRT onset after cycles of chemoimmunotherapy was 62 days. Total radiation dose and fraction dose of TRT include from 30 Gy in 10 fractions, up to definitive dose in selected patients. Consolidative TRT was associated with a significantly longer PFS than systemic therapy alone (one-year PFS of 61% vs. 31%, p<0.001), with a trend toward improved OS (one-year OS of 80% vs. 61%, p=0.027). Conclusion: Multi-center data from establishments in the South of Italy provide a general confidence in using TRT as a consolidative strategy after chemoimmunotherapy. Considering the limits of a restrospective analysis, these preliminary results support the feasibility of the approach and encourage a prospective evaluation
The efficiency of the spiral-in of a black hole to the Galactic centre
We study the efficiency at which a black hole or dense star cluster
spirals-in to the Galactic centre. This process takes place on a dynamical
friction time scale, which depends on the value of the Coulomb logarithm ln(L).
We determine the accurate value of this parameter using the direct N-body
method, a tree algorithm and a particle-mesh technique with up to 2 million
plus one particles. The three different techniques are in excellent agreement.
Our result for the Coulomb logarithm appears to be independent of the number of
particles. We conclude that ln(L) = 6.6 +/- 0.6 for a massive point particle in
the inner few parsec of the Galactic bulge. For an extended object, like a
dense star cluster, ln(L) is smaller, with a value of the logarithm argument L
inversely proportional to the object size.Comment: 11 pages, 12 figures, MNRAS, in press revised version following
referee's comments, references updated, typos correcte
Measurement of CNGS muon neutrino speed with Borexino
We have measured the speed of muon neutrinos with the Borexino detector using
short-bunch CNGS beams. The final result for the difference in time-of-flight
between a =17 GeV muon neutrino and a particle moving at the speed of light
in vacuum is {\delta}t = 0.8 \pm 0.7stat \pm 2.9sys ns, well consistent with
zero.Comment: 6 pages, 5 figure
Disruption time scales of star clusters in different galaxies
The observed average lifetime of the population of star clusters in the Solar
Neighbourhood, the Small Magellanic Cloud and in selected regions of M51 and
M33 is compared with simple theoretical predictions and with the results of
N-body simulations. The empirically derived lifetimes (or disruption times) of
star clusters depend on their initial mass as t_dis ~ Mcl^0.60 in all four
galaxies. N-body simulations have shown that the predicted disruption time of
clusters in a tidal field scales as t_dis^pred ~ t_rh^0.75 t_cr^0.25, where
t_rh is the initial half-mass relaxation time and t_cr is the crossing time for
a cluster in equilibrium. We show that this can be approximated accurately by
t_dis^pred ~ M_cl^0.62 for clusters in the mass range of about 10^3 to 10^6
M_sun, in excellent agreement with the observations. Observations of clusters
in different extragalactic environments show that t_dis also depends on the
ambient density in the galaxies where the clusters reside. Linear analysis
predicts that the disruption time will depend on the ambient density of the
cluster environment as t_dis ~ rho_amb^-0.5. This relation is consistent with
N-body simulations.Comment: 7 pages, 4 figures. Accepted for publication in A&
- …