13 research outputs found

    Quantum gravity and the standard model

    Full text link
    We show that a class of background independent models of quantum spacetime have local excitations that can be mapped to the first generation fermions of the standard model of particle physics. These states propagate coherently as they can be shown to be noiseless subsystems of the microscopic quantum dynamics. These are identified in terms of certain patterns of braiding of graphs, thus giving a quantum gravitational foundation for the topological preon model proposed by one of us. These results apply to a large class of theories in which the Hilbert space has a basis of states given by ribbon graphs embedded in a three-dimensional manifold up to diffeomorphisms, and the dynamics is given by local moves on the graphs, such as arise in the representation theory of quantum groups. For such models, matter appears to be already included in the microscopic kinematics and dynamics.Comment: 12 pages, 21 figures, improved presentation, results unchange

    A Stochastic Geometric Approach

    No full text
    We review some stochastic geometric models that arise from the study of certain quantum spin systems. In these models the fundamental properties of the ground states or equilibrium states of the quantum systems can be given a simple stochastic geometric interpretation. One thus obtains a new class of challenging stochastic geometric problems

    Contrast and Signal-to-Noise Ratio

    No full text

    CBCT and Micro-CT on the Study of Root Canal Anatomy

    No full text
    corecore