13 research outputs found
Quantum gravity and the standard model
We show that a class of background independent models of quantum spacetime
have local excitations that can be mapped to the first generation fermions of
the standard model of particle physics. These states propagate coherently as
they can be shown to be noiseless subsystems of the microscopic quantum
dynamics. These are identified in terms of certain patterns of braiding of
graphs, thus giving a quantum gravitational foundation for the topological
preon model proposed by one of us.
These results apply to a large class of theories in which the Hilbert space
has a basis of states given by ribbon graphs embedded in a three-dimensional
manifold up to diffeomorphisms, and the dynamics is given by local moves on the
graphs, such as arise in the representation theory of quantum groups. For such
models, matter appears to be already included in the microscopic kinematics and
dynamics.Comment: 12 pages, 21 figures, improved presentation, results unchange
A Stochastic Geometric Approach
We review some stochastic geometric models that arise from the study of certain quantum spin systems. In these models the fundamental properties of the ground states or equilibrium states of the quantum systems can be given a simple stochastic geometric interpretation. One thus obtains a new class of challenging stochastic geometric problems
