2,863 research outputs found
Signatures of the collapse and revival of a spin Schr\"{o}dinger cat state in a continuously monitored field mode
We study the effects of continuous measurement of the field mode during the
collapse and revival of spin Schr\"{o}dinger cat states in the Tavis-Cummings
model of N qubits (two-level quantum systems) coupled to a field mode. We show
that a compromise between relatively weak and relatively strong continuous
measurement will not completely destroy the collapse and revival dynamics while
still providing enough signal-to-noise resolution to identify the signatures of
the process in the measurement record. This type of measurement would in
principle allow the verification of the occurrence of the collapse and revival
of a spin Schr\"{o}dinger cat state.Comment: 5 pages, 2 figure
Cool for Cats
The iconic Schr\"odinger's cat state describes a system that may be in a
superposition of two macroscopically distinct states, for example two clearly
separated oscillator coherent states. Quite apart from their role in
understanding the quantum classical boundary, such states have been suggested
as offering a quantum advantage for quantum metrology, quantum communication
and quantum computation. As is well known these applications have to face the
difficulty that the irreversible interaction with an environment causes the
superposition to rapidly evolve to a mixture of the component states in the
case that the environment is not monitored. Here we show that by engineering
the interaction with the environment there exists a large class of systems that
can evolve irreversibly to a cat state. To be precise we show that it is
possible to engineer an irreversible process so that the steady state is close
to a pure Schr\"odinger's cat state by using double well systems and an
environment comprising two-photon (or phonon) absorbers. We also show that it
should be possible to prolong the lifetime of a Schr\"odinger's cat state
exposed to the destructive effects of a conventional single-photon decohering
environment. Our protocol should make it easier to prepare and maintain
Schr\"odinger cat states which would be useful in applications of quantum
metrology and information processing as well as being of interest to those
probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary
informatio
Efficient optical quantum information processing
Quantum information offers the promise of being able to perform certain
communication and computation tasks that cannot be done with conventional
information technology (IT). Optical Quantum Information Processing (QIP) holds
particular appeal, since it offers the prospect of communicating and computing
with the same type of qubit. Linear optical techniques have been shown to be
scalable, but the corresponding quantum computing circuits need many auxiliary
resources. Here we present an alternative approach to optical QIP, based on the
use of weak cross-Kerr nonlinearities and homodyne measurements. We show how
this approach provides the fundamental building blocks for highly efficient
non-absorbing single photon number resolving detectors, two qubit parity
detectors, Bell state measurements and finally near deterministic control-not
(CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum
computation; References update
Weak non-linearities and cluster states
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes have a low
initial success probability and low detector efficiencies cause a serious
blowup in resources. In contrast, our approach uses continuous variables and
highly efficient measurements. We present a two-qubit scheme, with a simple
homodyne measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling, showing how these can be vastly improved with access to
this new probability range.Comment: 5 pages, to appear in Phys. Rev.
Photonic Hybrid State Entanglement Swapping using Cat State Superpositions
We propose the use of hybrid entanglement in an entanglement swapping protocol, as means of distributing a Bell state with high fidelity to two parties, Alice and Bob. The hybrid entanglement used in this work is described as a discrete variable (Fock state) and a continuous variable (cat state superposition) entangled state. We model equal and unequal levels of photonic loss between the two propagating continuous variable modes, before detecting these states via a projective vacuum-one-photon measurement, and the other mode via balanced homodyne detection. We investigate homodyne measurement imperfections, and the associated success probability of the measurement schemes chosen in this protocol. We show that our entanglement swapping scheme is resilient to low levels of photonic losses, as well as low levels of averaged unequal losses between the two propagating modes, and show an improvement in this loss resilience over other hybrid entanglement schemes using coherent state superpositions as the propagating modes. Finally, we conclude that our protocol is suitable for potential quantum networking applications which require two nodes to share entanglement separated over a distance of 5-10 km when used with a suitable entanglement purification scheme
Tunable refraction in a two dimensional quantum metamaterial
In this paper we consider a two-dimensional metamaterial comprising an array
of qubits (two level quantum objects). Here we show that a two-dimensional
quantum metamaterial may be controlled, e.g. via the application of a magnetic
flux, so as to provide controllable refraction of an input signal. Our results
are consistent with a material that could be quantum birefringent (beam
splitter) or not dependent on the application of this control parameter. We
note that quantum metamaterials as proposed here may be fabricated from a
variety of current candidate technologies from superconducting qubits to
quantum dots. Thus the ideas proposed in this work would be readily testable in
existing state of the art laboratories.Comment: 4 pages, 2 figure
Superconducting charge qubits from a microscopic many-body perspective
The quantised Josephson junction equation that underpins the behaviour of
charge qubits and other tunnel devices is usually derived through cannonical
quantisation of the classical macroscopic Josephson relations. However, this
approach may neglect effects due to the fact that the charge qubit consists of
a superconducting island of finite size connected to a large superconductor.
We show that the well known quantised Josephson equation can be derived
directly and simply from a microscopic many-body Hamiltonian. By choosing the
appropriate strong coupling limit we produce a highly simplified Hamiltonian
that nevertheless allows us to go beyond the mean field limit and predict
further finite-size terms in addition to the basic equation.Comment: Accepted for J Phys Condensed Matte
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
A high-efficiency quantum non-demolition single photon number resolving detector
We discuss a novel approach to the problem of creating a photon number
resolving detector using the giant Kerr nonlinearities available in
electromagnetically induced transparency. Our scheme can implement a photon
number quantum non-demolition measurement with high efficiency (99%)
using less than 1600 atoms embedded in a dielectric waveguide.Comment: 4 pages, 4 figures. Significantly revised. More discussion on the
potential experimental realisatio
Weak nonlinearities: A new route to optical quantum computation
Quantum information processing (QIP) offers the promise of being able to do
things that we cannot do with conventional technology. Here we present a new
route for distributed optical QIP, based on generalized quantum non-demolition
measurements, providing a unified approach for quantum communication and
computing. Interactions between photons are generated using weak
non-linearities and intense laser fields--the use of such fields provides for
robust distribution of quantum information. Our approach requires only a
practical set of resources, and it uses these very efficiently. Thus it
promises to be extremely useful for the first quantum technologies, based on
scarce resources. Furthermore, in the longer term this approach provides both
options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure
- …