2,024 research outputs found

    Overcoming decoherence in the collapse and revival of spin Schr\"odinger cats

    Full text link
    In addition to being a very interesting quantum phenomenon, Schr\"odinger cat swapping has the potential for application in the preparation of quantum states that could be used in metrology and other quantum processing. We study in detail the effects of field decoherence on a cat-swapping system comprising a set of identical qubits, or spins, all coupled to a field mode. We demonstrate that increasing the number of spins actually mitigates the effects of field decoherence on the collapse and revival of a spin Schr\"odinger cat, which could be of significant utility in quantum metrology and other quantum processing.Comment: 4 pages, 2 figure

    Weak nonlinearities: A new route to optical quantum computation

    Full text link
    Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak non-linearities and intense laser fields--the use of such fields provides for robust distribution of quantum information. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure

    Superconducting Analogues of Quantum Optical Phenomena: Macroscopic Quantum Superpositions and Squeezing in a SQUID Ring

    Get PDF
    In this paper we explore the quantum behaviour of a SQUID ring which has a significant Josephson coupling energy. We show that that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilised to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring.Comment: 9 pages, 10 figures, To be submitted to Phys. Rev. A. (changes for referee's and editior's comments - replaced to try to get PDF working

    Efficient optical quantum information processing

    Full text link
    Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum computation; References update

    Entanglement generation in persistent current qubits

    Full text link
    In this paper we investigate the generation of entanglement between two persistent current qubits. The qubits are coupled inductively to each other and to a common bias field, which is used to control the qubit behaviour and is represented schematically by a linear oscillator mode. We consider the use of classical and quantum representations for the qubit control fields and how fluctuations in the control fields tend to suppress entanglement. In particular, we demonstrate how fluctuations in the bias fields affect the entanglement generated between persistent current qubits and may limit the ability to design practical systems.Comment: 7 pages, 4 figures, minor changes in reply to referees comment

    The efficiencies of generating cluster states with weak non-linearities

    Full text link
    We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes can be made robust to detector loss, spontaneous emission and cavity mismatching but as a consequence the overhead costs grow rapidly, in particular when considering single photon loss. In contrast, our approach uses continuous variables and highly efficient homodyne measurements. We present a two-qubit scheme, with a simple bucket measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling. This leads to a "no-measurement" approach to building cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on "Measurement-Based Quantum Information Processing

    Energy Down Conversion between Classical Electromagnetic Fields via a Quantum Mechanical SQUID Ring

    Get PDF
    We consider the interaction of a quantum mechanical SQUID ring with a classical resonator (a parallel LCLC tank circuit). In our model we assume that the evolution of the ring maintains its quantum mechanical nature, even though the circuit to which it is coupled is treated classically. We show that when the SQUID ring is driven by a classical monochromatic microwave source, energy can be transferred between this input and the tank circuit, even when the frequency ratio between them is very large. Essentially, these calculations deal with the coupling between a single macroscopic quantum object (the SQUID ring) and a classical circuit measurement device where due account is taken of the non-perturbative behaviour of the ring and the concomitant non-linear interaction of the ring with this device.Comment: 7 pages, 6 figure
    • …
    corecore