2,272 research outputs found
Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection
International audienceUsing Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells
Cool for Cats
The iconic Schr\"odinger's cat state describes a system that may be in a
superposition of two macroscopically distinct states, for example two clearly
separated oscillator coherent states. Quite apart from their role in
understanding the quantum classical boundary, such states have been suggested
as offering a quantum advantage for quantum metrology, quantum communication
and quantum computation. As is well known these applications have to face the
difficulty that the irreversible interaction with an environment causes the
superposition to rapidly evolve to a mixture of the component states in the
case that the environment is not monitored. Here we show that by engineering
the interaction with the environment there exists a large class of systems that
can evolve irreversibly to a cat state. To be precise we show that it is
possible to engineer an irreversible process so that the steady state is close
to a pure Schr\"odinger's cat state by using double well systems and an
environment comprising two-photon (or phonon) absorbers. We also show that it
should be possible to prolong the lifetime of a Schr\"odinger's cat state
exposed to the destructive effects of a conventional single-photon decohering
environment. Our protocol should make it easier to prepare and maintain
Schr\"odinger cat states which would be useful in applications of quantum
metrology and information processing as well as being of interest to those
probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary
informatio
Selective spin coupling through a single exciton
We present a novel scheme for performing a conditional phase gate between two
spin qubits in adjacent semiconductor quantum dots through delocalized single
exciton states, formed through the inter-dot Foerster interaction. We consider
two resonant quantum dots, each containing a single excess conduction band
electron whose spin embodies the qubit. We demonstrate that both the two-qubit
gate, and arbitrary single-qubit rotations, may be realized to a high fidelity
with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved,
references adde
Weak nonlinearities: A new route to optical quantum computation
Quantum information processing (QIP) offers the promise of being able to do
things that we cannot do with conventional technology. Here we present a new
route for distributed optical QIP, based on generalized quantum non-demolition
measurements, providing a unified approach for quantum communication and
computing. Interactions between photons are generated using weak
non-linearities and intense laser fields--the use of such fields provides for
robust distribution of quantum information. Our approach requires only a
practical set of resources, and it uses these very efficiently. Thus it
promises to be extremely useful for the first quantum technologies, based on
scarce resources. Furthermore, in the longer term this approach provides both
options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure
Efficient optical quantum information processing
Quantum information offers the promise of being able to perform certain
communication and computation tasks that cannot be done with conventional
information technology (IT). Optical Quantum Information Processing (QIP) holds
particular appeal, since it offers the prospect of communicating and computing
with the same type of qubit. Linear optical techniques have been shown to be
scalable, but the corresponding quantum computing circuits need many auxiliary
resources. Here we present an alternative approach to optical QIP, based on the
use of weak cross-Kerr nonlinearities and homodyne measurements. We show how
this approach provides the fundamental building blocks for highly efficient
non-absorbing single photon number resolving detectors, two qubit parity
detectors, Bell state measurements and finally near deterministic control-not
(CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum
computation; References update
Applications of Coherent Population Transfer to Quantum Information Processing
We develop a theoretical framework for the exploration of quantum mechanical
coherent population transfer phenomena, with the ultimate goal of constructing
faithful models of devices for classical and quantum information processing
applications. We begin by outlining a general formalism for weak-field quantum
optics in the Schr\"{o}dinger picture, and we include a general
phenomenological representation of Lindblad decoherence mechanisms. We use this
formalism to describe the interaction of a single stationary multilevel atom
with one or more propagating classical or quantum laser fields, and we describe
in detail several manifestations and applications of electromagnetically
induced transparency. In addition to providing a clear description of the
nonlinear optical characteristics of electromagnetically transparent systems
that lead to ``ultraslow light,'' we verify that -- in principle -- a
multi-particle atomic or molecular system could be used as either a low power
optical switch or a quantum phase shifter. However, we demonstrate that the
presence of significant dephasing effects destroys the induced transparency,
and that increasing the number of particles weakly interacting with the probe
field only reduces the nonlinearity further. Finally, a detailed calculation of
the relative quantum phase induced by a system of atoms on a superposition of
spatially distinct Fock states predicts that a significant quasi-Kerr
nonlinearity and a low entropy cannot be simultaneously achieved in the
presence of arbitrary spontaneous emission rates. Within our model, we identify
the constraints that need to be met for this system to act as a one-qubit and a
two-qubit conditional phase gate.Comment: 25 pages, 14 figure
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection
The driven non-linear duffing osillator is a very good, and standard, example
of a quantum mechanical system from which classical-like orbits can be
recovered from unravellings of the master equation. In order to generated such
trajectories in the phase space of this oscillator in this paper we use a the
quantum jumps unravelling together with a suitable application of the
correspondence principle. We analyse the measured readout by considering the
power spectra of photon counts produced by the quantum jumps. Here we show that
localisation of the wave packet from the measurement of the oscillator by the
photon detector produces a concomitant structure in the power spectra of the
measured output. Furthermore, we demonstrate that this spectral analysis can be
used to distinguish between different modes of the underlying dynamics of the
oscillator.Comment: 7 pages, 6 figure
p53-mediated delayed NF-κB activity enhances etoposide-induced cell death in medulloblastoma
Medulloblastoma (MB) is an embryonic brain tumour that arises in the cerebellum. Using several MB cell lines, we have demonstrated that the chemotherapeutic drug etoposide induces a p53- and caspase-dependent cell death. We have observed an additional caspase-independent cell death mechanism involving delayed nuclear factor κB (NF-κB) activity. The delayed induction was controlled by a p53-dependent transcription step and the production of death receptors (especially CD95/Fas). We further demonstrated that in both MB and glioblastoma (GM) cell lines, in which the p53 pathway was not functional, no p65 activation could be detected upon etoposide treatment. MB cell lines that have mutations in p53 or NF-κB are either less sensitive (NF-κB mutant) or even completely resistant (p53 mutant) to chemotherapeutic intervention. The optimal cell death was only achieved when both p53 and NF-κB were switched on. Taken together, our results shed light on the mechanism of NF-κB activation by etoposide in brain tumours and show that the genetic background of MB and GM cells determines their sensitivity to chemotherapy and has to be taken into account for efficient therapeutic intervention
- …