2,597 research outputs found

    Smoothed Analysis of Dynamic Networks

    Full text link
    We generalize the technique of smoothed analysis to distributed algorithms in dynamic network models. Whereas standard smoothed analysis studies the impact of small random perturbations of input values on algorithm performance metrics, dynamic graph smoothed analysis studies the impact of random perturbations of the underlying changing network graph topologies. Similar to the original application of smoothed analysis, our goal is to study whether known strong lower bounds in dynamic network models are robust or fragile: do they withstand small (random) perturbations, or do such deviations push the graphs far enough from a precise pathological instance to enable much better performance? Fragile lower bounds are likely not relevant for real-world deployment, while robust lower bounds represent a true difficulty caused by dynamic behavior. We apply this technique to three standard dynamic network problems with known strong worst-case lower bounds: random walks, flooding, and aggregation. We prove that these bounds provide a spectrum of robustness when subjected to smoothing---some are extremely fragile (random walks), some are moderately fragile / robust (flooding), and some are extremely robust (aggregation).Comment: 20 page

    Twice-Ramanujan Sparsifiers

    Full text link
    We prove that every graph has a spectral sparsifier with a number of edges linear in its number of vertices. As linear-sized spectral sparsifiers of complete graphs are expanders, our sparsifiers of arbitrary graphs can be viewed as generalizations of expander graphs. In particular, we prove that for every d>1d>1 and every undirected, weighted graph G=(V,E,w)G=(V,E,w) on nn vertices, there exists a weighted graph H=(V,F,w~)H=(V,F,\tilde{w}) with at most \ceil{d(n-1)} edges such that for every x∈RVx \in \R^{V}, xTLGx≀xTLHx≀(d+1+2dd+1βˆ’2d)β‹…xTLGx x^{T}L_{G}x \leq x^{T}L_{H}x \leq (\frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}})\cdot x^{T}L_{G}x where LGL_{G} and LHL_{H} are the Laplacian matrices of GG and HH, respectively. Thus, HH approximates GG spectrally at least as well as a Ramanujan expander with dn/2dn/2 edges approximates the complete graph. We give an elementary deterministic polynomial time algorithm for constructing HH
    • …
    corecore