215 research outputs found

    Twice-Ramanujan Sparsifiers

    Full text link
    We prove that every graph has a spectral sparsifier with a number of edges linear in its number of vertices. As linear-sized spectral sparsifiers of complete graphs are expanders, our sparsifiers of arbitrary graphs can be viewed as generalizations of expander graphs. In particular, we prove that for every d>1d>1 and every undirected, weighted graph G=(V,E,w)G=(V,E,w) on nn vertices, there exists a weighted graph H=(V,F,w~)H=(V,F,\tilde{w}) with at most \ceil{d(n-1)} edges such that for every x∈RVx \in \R^{V}, xTLGx≀xTLHx≀(d+1+2dd+1βˆ’2d)β‹…xTLGx x^{T}L_{G}x \leq x^{T}L_{H}x \leq (\frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}})\cdot x^{T}L_{G}x where LGL_{G} and LHL_{H} are the Laplacian matrices of GG and HH, respectively. Thus, HH approximates GG spectrally at least as well as a Ramanujan expander with dn/2dn/2 edges approximates the complete graph. We give an elementary deterministic polynomial time algorithm for constructing HH

    Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem

    Get PDF
    We use the method of interlacing families of polynomials introduced to prove two theorems known to imply a positive solution to the Kadison--Singer problem. The first is Weaver's conjecture KS2KS_{2} \cite{weaver}, which is known to imply Kadison--Singer via a projection paving conjecture of Akemann and Anderson. The second is a formulation due to Casazza, et al., of Anderson's original paving conjecture(s), for which we are able to compute explicit paving bounds. The proof involves an analysis of the largest roots of a family of polynomials that we call the "mixed characteristic polynomials" of a collection of matrices.Comment: This is the version that has been submitte
    • …
    corecore